


MANONMANIAM SUNDARANAR UNIVERISTY, TIRUNELVELI-12

SYLLABUS

UG - COURSES – AFFILIATED COLLEGES

Semester-V								
Part	Subject Status	Subject Title	Subject Code	Credit				
3	Core	Complex Analysis		4				
3	Core	Graph Theory		4				
3	Core	Number Theory		4				
3	Core	Dynamics		4				
3	Core	Numerical Methods		4				
3	Major Elective	 Astronomy Fuzzy Mathematics Modeling 		4				
3	Major Elective	 Operations Research II Coding Theory Python 		4				

Total Marks: 100 Internal Exam: 25 marks + External Exam: 75 marks

A. Scheme for internal Assessment:

Maximum marks for written test: 20 marks

3 internal tests, each of **I hour** duration shall be conducted every semester.

To the average of the **best two** written examinations must be added the marks scored in. The **assignment** for 5 marks.

The break up for internal assessment shall be:

Written test- 20 marks; Assignment -5 marks Total - 25 marks

B. Scheme of External Examination

3 hrs. examination at the end of the semester

A-Part: 1 mark question two - from each unit B-Part: 5 marks question one - from each unit C-Part: 8 marks question one - from each unit

Conversion of Marks into Grade Points and Letter Grades

S.No	Marks	Letter Grade	Grade point (GP)	Performance
1	90-100	О	10	Outstanding
2	80-89	A+	9	Excellent
3	70-79	A	8	Very Good
4	60-69	B+	7	Good
5	50-59	В	6	Above Average
6	40-49	С	5	Pass
7	0-39	RA	-	Reappear
8	0	AA	-	Absent

Cumulative Grade Point Average (CGPA)

$$CGPA = \frac{\Sigma (GP \times C)}{\Sigma C}$$

- **GP** = Grade point, **C** = Credit
- CGPA is calculated only for Part-III courses
- CGPA for a semester is awarded on cumulative basis

> Classification

a) First Class with Distinction
 b) First Class
 c CGPA ≥ 7.5*
 c CGPA ≥ 6.0

c) Second Class : $CGPA \ge 5.0$ and < 6.0

d) Third Class : CGPA < 5.0

COMPLEX ANALYSIS

Objectives:

- To understand the concepts of complex variables.
- To learn about elementary transformations in complex variables.

Course Learning Outcomes: It enables the students to

- 1. know the concept of complex integration, Cauchy integral formula.
- 2. understand the importance of singularity and residues.

UNIT – 1: (Analytic functions)

Functions of a complex variable – Derivatives – Cauchy – Riemann equations – sufficient conditions– Polar form– Analytic functions– Harmonic functions.

UNIT – 2: (Integrals)

Definite integrals – Contours – Cauchy – Goursat theorem – anti-derivatives and independence of path–Cauchy Integral formula – Morera's theorem.

UNIT – 3: (Series)

Taylor's series – Examples – Laurent's series – Zeros of analytic functions – Residues–Residue theorem–Principal part of functions–Residues at poles.

UNIT – 4: (Evaluation of Integrals)

Evaluation of improper real integrals – improper integrals involving sines and cosines – Definite integrals involving sines and cosines.

UNIT – 5: (Transformations)

Basic properties-Bilinear maps-fixed points.

Text Book:

Arumugam.S and T. Issac-"Complex Analysis" –Scitech Publishing House–Chennai, (2002).

- 1. Churchill.R.V. and J.W.Brown—"Complex variables and Applications"—McGraw Hill International Editions IX Edition, 2013.
- 2. Ponnuswamy.S "Foundations of Complex Analysis", Narosa Publication House, NewDelhi, II Edition 2005.
- 3. Duraipandian.P and Lakshmi Duraipandian—"ComplexAnalysis"—Emerald Publications, Chennai (2001).

GRAPH THEORY

Objectives:

- To introduce the notion of graph theory and its applications
- To learn the techniques in graph theory

Course Learning Outcomes: It enables the students to

- 1. know different types of graphs.
- 2. understand the concepts of walks, trails and paths.

UNIT - 1:

Definition and examples of graphs – degrees - subgraphs – isomorphism – independent sets and coverings – matrices – operation on graphs.

UNIT – 2:

Degree sequences – graphic sequences – walks – trails and paths – connectedness and components–connectivity.

UNIT - 3:

Eulerian graphs – Hamiltonian graphs – characterization of trees – centre of a tree.

UNIT - 4:

Definition and properties of planar graphs – chromatic number and chromatic index.

UNIT - 5:

Chromatic polynomials – definition and basic properties of digraphs – paths and connectedness in digraphs.

Text Book:

Arumugam.S & S.Ramachandran–Invitation to graph Theory, Scitech publications, Chennai, 2002.

- 1. Kumaravelu.S and Susheela Kumaravelu Graph theory- Nagercoil, 2002.
- 2. Narasingh Deo-Graph theory with application to engineering and computer science, Prentice Hall of India pvt.Ltd., NewDelhi,1979.

NUMBER THEORY

Objectives:

- To highlight the beauties in the world of numbers
- To prepare the students for coding through congruence

Course Learning Outcomes: It enables the students to

- 1. learn Fermat's Theorem & Wilson's Theorem.
- 2. understand the importance of Division algorithm.

UNIT -1:

Peano's Axioms – Mathematical induction – The Binomial Theorem – Early Number Theory.

UNIT – 2:

Division Algorithm – GCD – Euclidean Algorithm –The Diaphantine Equation ax+by=c.

UNIT - 3:

The fundamental Theorem of Arithmetic – The Sieve of Eratosthenes – The Goldbach conjecture.

UNIT - 4:

Basic properties of congruences – Linear congruence and the Chinese Remainder Theorem.

UNIT - 5:

Fermat's Theorem – Wilson's Theorem – The Fermat – Kraitchik Factorization Method.

Text Book:

David.M.Burton-ElementaryNumberTheory-Tata McGraw Hill Education Pvt. Ltd-(SixthEdition)-2007.

- 1. Ivan Nivenand. H, Zuckerman-An Introduction to Theory of Numbers, Cambridge University Press -2019.
- 2. Kumaravelu.S, and Susheela Kumaravelu -Elements of Number Theory-Nagercoil, 2002.

DYNAMICS

Objectives:

- To provide a basic knowledge of the behavior of objects in motion
- To develop a working knowledge to handle practical problems

Course Learning Outcomes: It enables the students to

- 1. develop the Knowledge in Projectiles.
- 2. learn about the differential equation of central orbit.

UNIT - 1:

Projectiles – Equation of path – range–maximum height – time of flight – range on an inclined plane - problems.

UNIT - 2:

Collision of elastic bodies – Laws of impact – direct and oblique impact-Problems.

UINT - 3:

Simple Harmonic Motion (SHM) in a straight line- Geometrical representation – composition of SHM of the same period in the same line and along two perpendicular directions–problems.

UNIT - 4:

Motion under the action of central forces – velocity and acceleration in polar coordinates–problems.

UNIT – 5:

Differential Equation of central orbit - pedal equation of central orbit - problems to find the law of force towards the pole when the orbit is given.

Text Book:

Venkatraman, M.K.- A Text Book on Dynamics, Agasthiar Publication, Trichy, 2020.

- 1. Narayanan, S-Dynamics, S.Chand & company, 16th Edition, 1986, NewDelhi.
- 2. Duraipandian.P, LaxmiDuraipandian and Muthamizh Jayaprgasam-Mechanics S.Chand & Company (2003).
- 3. I.Rajeswari Mechanics Saras Publication, Nagercoil, (2016).

NUMERICAL METHODS

Objectives:

- To introduce the finite differences
- To solve numerical problems by different methods

Course Learning Outcomes: It enables the students to

- 1. recognize numerical differentiation and integration.
- 2. understand the concepts of solving various numerical problems by using different methods.

UNIT - 1:

Solution of Numerical algebraic and Transcendental Equations: Bisection method–Newton's method. Criterion of order of convergence of Newton's method. Regula False method – Gauss elimination – Gauss Jacobi – Gauss Seidal method.

UNIT - 2:

Finite Difference: First and higher order differences – Forward and backward differences – Properties of Operator – Differences of a polynomial –Factorial Polynomial.

UNIT - 3:

Interpolation: Newton's Forward–backward, Gauss forward–backward interpolation formula–Bessel's formula. Divided differences – Newton's divided difference formula – Lagrange's interpolation formula.

UNIT -4:

Numerical Differentiation and Integration: Newton's forward and backward differences for differentiation – Derivatives using Bessel's formula – Trapezoidal rule, Simpson's 1/3rule & 3/8rule.

UNIT - 5:

Difference Equations: Definition – order and degree of difference equation – Linear difference equation – Finding complementary function – particular Integral – simple applications.

Text Book:

Venkatraman.M.K - Numerical methods in Science and Engineering National Publishing Company - V Edition 1998.

Books for Reference:

- 1. Kandasamy.P.K.Thilagavathy and K.Gunavathy, Numerical Methods, S.Chand & Company Ltd. Edn. 2006.
- 2. Autar Kaw and Egwwn Enc Kalu Numerical methods with Application Abidet. Autokaw.com 2nd Edtion, 2011.
- 3. Dr.A.Singaravelu Statistics & Numerical Methods, Meenakshi Agency (2012).

ASTRONOMY

Objectives:

- To introduce the exciting world of Astronomy to students
- To understand the movements of the celestial sphere

Course Learning Outcomes: It enables the students to

- 1. know the Kepler's laws of the Planetary motion.
- 2. study the concept of the fundamental formula of Spherical trigonometry.

UNIT - 1:

Spherical Trigonometry : Spherical triangle – The fundamental formula of Spherical trigonometry, the sine, cosine, four parts and Napier formula (without proof) and simple problems.

UNIT - 2:

The Celestial Sphere: Celestial co-ordinates – Diurnal motion – Rising and setting of a star – sidereal time – circumpolar stars – Morning and evening stars - Twilight.

UNIT – 3:

Earth – length of a day – Refraction – Tangent formula – Cassini's formula – Effects of refraction.

UNIT - 4:

Geocentric parallax – Effects – Heliocentric parallax – Effects.

UNIT – 5:

Kepler's laws – verification of Kepler's laws – True anomaly, mean anomaly, Eccentric anomaly - Relation between them.

Text Book:

• Kumaravelu.S and Susheela Kumaravelu –Astronomy for degree classes, Rainbow Printers, Nagercoil (2005).

Book for Reference:

• Ramachandran.G.V – Astronomy, Mission Press, Palayamkottai, 1965.

FUZZY MATHEMATICS

Objectives:

- To introduce fuzzy concepts to students.
- To facilitate the students to study fuzzy operations and fuzzy numbers.

Course Learning Outcomes: It enables the students to

- 1. form a clear idea about Fuzzy sets.
- 2. learn the concepts of Fuzzy operations & Fuzzy numbers.

UNIT - 1:

Crisp Sets – Fuzzy Sets – Basic Types – Basic Concepts – Characteristics and Significance of Paradigm Shift.

UNIT – 2:

Additional properties of α -cuts – representations of fuzzy sets – Extension principle for fuzzy sets.

UNIT - 3:

Fuzzy set operations – Fuzzy complements – Fuzzy intersections: t-norms – Fuzzy Unions: t- conforms – Combinations of operations.

UNIT -4:

Fuzzy Numbers – Linguistic variables – Arithmetic operations on intervals – Arithmetic operations of fuzzy numbers – Lattice of fuzzy numbers – Fuzzy Equations.

UNIT - 5:

Fuzzy Decision Making – Individual Decision Making – Multi – person decision making –Fuzzy linear Programming.

Text Book:

George J.Klir and BoBo Yuan–Fuzzy sets and Fuzzy Logic Theory Applications, Prentice Hall of India, 2002, New Delhi.

Book for Reference:

George J. Klirand Tina. A. Folger – Fuzzy sets, uncertainty and Informations – Prentice Hall of India, 2003, New Delhi.

MATHEMATICAL MODELLING

Objectives:

- To study the mathematical models through ODE and difference equations.
- To train the students to develop mathematical models in real life problems.

Course Learning Outcomes: It enables the students to

- 1. get training to develop mathematical models in real life problems.
- 2. make mathematical models through O.D.E. understand the concepts of solving various numerical problem by using different methods.

UNIT - 1:

(Mathematical modeling through O.D.E(First order)): Linear growth and Decay models – Non –linear growth and Decay models – Compartment Models – Dynamics Problems – Geometrical Problems.

UNIT - 2:

Population dynamics – Epidemics – Compartment Models – Economics, Medicine, Arms race, Battles and International Trade.

UNIT - 3:

(Mathematical Modelling through O.D.E.(Second order)): Planetary motion – circular motion – Motion of satellites – Modelling through linear difference equations of second order.

UNIT - 4:

(Mathematical Modelling through difference equations): Basic theory of difference equation with constant coefficients – Economics and Finance – Population dynamics and genetics – Probability theory.

UNIT - 5:

(Modelling through graphs): Solutions that can be modelled through graphs - models in terms of directed graphs, signed graphs – weighted digraphs and unoriented graphs.

Text Book:

• Kapur.J.N – Treatment as in "Mathematical Modelling" New Age International Publishers, 2004.

Books for Reference:

1. Kapur.J.N–Mathematical Modelling in Biology and Medicine – East West Press – 1985.

- 2. Singh Mathematical Modelling, International Book house –2003.
- 3. Frank R.Giordano, MauriceD.Weir and WilliamP.Fox,- A first course in mathematical modelling, Thomson Learning, London and New York, 2003.

OPERATIONS RESEARCH – II

Objectives:

- To introduce Games and strategies.
- To understand networking problems.

Course Learning Outcomes: It enables the students to

- 1. acquire knowledge about queuing model.
- 2. solve life oriented problems.

UNIT - 1:

Games and Strategies: Two Person Zero sum Games – The Maximin – Minimax Principle – Games without Saddle Points – Mixed Strategies – Graphical Solution of 2xn and mx2 games–Dominance Property.

UNIT - 2:

Replacement of items that deteriorate with time – replace mentage of a machine taking money value into consideration – replacement of items that completely fail suddenly and Staffing Problems.

UNIT – 3:

Queing models: General concept and definitions – characteristics – properties of Poisson process Models(M/M/1:/FCFS),(M/M/1:N/FCFS),(M/M/S:/FCFS).

UNIT - 4:

Network scheduling by PERT/CPM: Network and basic components – Rules of Network Construction – Time Calculation in network – Critical Path Method –PERT Calculation.

UNIT - V:

Inventory Control: Introductions— Types of Inventories — Inventory decisions—Deterministic inventory Problem — EOQ problems without shortages.

Text Book:

KantiSwarup, P.K. Guptaand Manmohan – Operations Research – Sultan Chand & Sons – 2006, 12th Edition.

Books for Reference:

- 1. Gupta.P.KandD.S.Hira –OperationsResearch– S.Chand & sons VII Edition..
- 2. B.J.RanganathandA.S.Srikantappa—Operations Research, Yes Dee Publishing House, Chennai (2017).
- 3. Hillier, F.S. and G.J. Lieberman Introduction to Operations Research, 9th Ed., Tata McGraw Hill, Singapore, 2009.
- 4. HamdyA.Taha,-Operations Research, An Introduction,8th Ed.,Prentice—HallIndia,2006.
- 5. Hadley.G.- Linear Programming, Narosa Publishing House, NewDelhi,2002.

CODING THEORY

Objectives:

- To introduce coding and decoding concepts.
- To develop the students in the field of coding theory.

Course Learning Outcomes: It enables the students to

- 1. acquire knowledge about different codes.
- 2. understand the concepts of coding and decoding.

UNIT - 1:

Basic assumptions—Correcting and detecting error patterns—information rate—effects of error correction and detection — finding the most likely code word transmitted.

UNIT - 2:

Linear codes – two important–subspaces independence – basis, dimension–matrices – Bases for C and C+ generating matrices on coding.

UNIT - 3:

Parity check matrices— equivalent codes—distance of a linear code—Linear codes—cosets—MLD for linear codes—Reliability of IMLD for linear codes.

UNIT - 4:

 $Some bounds for codes-perfect codes-hamming codes-extended codes-\\ The extended Golay code-decoding the extended Golay code-Golay code.$

UNIT - 5:

Polynomials and words—introduction to cyclic codes—introduction to cyclic codes—Polynomial encoding and decoding—finding cyclic codes—Dual cyclic codes.

Text Books:

• Coding theory, the essentials–Marcel Dekker, Inc. Madtrison Avenue, New York.

Books for Reference:

1. Elwyn Berlekamp – Algebraic Coding Theory – Springer -1970.

PYTHON

Objectives:

- To Know the basic concept and structure of Python program.
- To Develop Student's Programming skills.

Course Learning Outcomes: It enables the students to

- 1. use string function in python.
- 2. understand the fundamental concepts to write a Python program

UNIT - 1:

Basics of Python Programming: Features – History – Future – Python Interpreter and Interactive mode – Writing and Executing First Python Program – Value and Types – Data Types – Operators and Expressions – Operations on Strings – Type Conversion – Comments – Functions and Modules. Chapter 2: Section 2.1 – 2.22

UNIT - 2:

Control Flow Statements: Introduction to Decision control Statements – Conditional Branching – Loops Structures – Nested Loops – Break – Continue – Pass – Else Statement Used with Loops. Chapter 3: Section 3.1 – 3.8

UNIT - 3:

Functions: Introduction – Defining a function – Function Call – Variable Scope and Life time – Fruitful Function – Lambda – Function Composition – Documentation Strings – Recursive Functions. Chapter 4: Section 4.1 – 4.8, 4.10 (Omit 4.9)

UNIT - 4:

Strings: Concatenating, Appending and Multiplying Strings – Immutable – Formatting Operator – Built – in String Methods and Functions – Slice Operation – Comparing Strings – Iterating String. Lists, Tuples and Dictionaries: Sequence – Lists. Chapter 5: Section 5.1 - 5.5, 5.8, 5.9 (Omit 5.6, 5.7)

UNIT - 5:

Lists, Tuples and Dictionaries: Tuple – Dictionaries – File Handling: Opening and Closing Files – Reading and Writing Files – Error and Exception Handling: Introduction – Handling Exceptions. Chapter 6: Section 6.4 – 6.5 (Omit 6.3) ,Chapter 7: Section 7.4, 7.5, Chapter 8: Section 8.1, 8.2

Text Book:

"Problem solving and Programming with Python", by Reema Thareja (Second Edition, 2019, OXFORD University Press)

- 1. "Problem Solving and Python Programming", by Mr. Ashok NamdevKamthane and Mr. Amit Ashok kamthane (McGraw Hill Education (India) Private Limited).
- 2. "Python Programming", by Ch. Sathyanarayana, M. Radhika Mani, B. N. Jagadesh, Universities Press (INDIA) Private Ltd.