

MANONMANIAM SUNDARANAR UNIVERISTY, TIRUNELVELI-12

SYLLABUS

(with effect from the academic year 2024-2025 onwards)

Semester-III							
Part	Subject Status	Subject Title	Subject Code	Credit			
III	CORE VII	QUANTUM MECHANICS-II	VPHC31				
III	CORE VIII	CONDENSED MATTER PHYSICS VPHC32		5			
III	CORE IX	NUMERICAL METHODS AND PROGRAMMING IN C++	VPHC33	5			
III	CORE X	PRACTICAL – III: ADVANCED PHYSICS EXPERIMENTS I AND MICROPROCESSOR 8085 & MICROCONTROLLER 8051 PROGRAMMING	VPHL31	4			
III	ELECTIVE V	SPECTROSCOPY	VPHE31	3			
III	SEC - 2	SEWAGE AND WASTE WATER TREATMENT AND REUSE	VPHSE31	2			
III		INTERNSHIP / FIELD VISIT / INDUSTRIAL VISIT/ RESEARCH KNOWLEDGE UPDATING ACTIVITY	VPHI31	2			

Total Marks: 100 Internal Exam: 25 marks + External Exam: 75 marks

A. Scheme for internal Assessment:

Maximum marks for written test: 20 marks

3 internal tests, each of **I hour** duration shall be conducted every semester.

To the average of the **best two** written examinations must be added the marks scored in. The **assignment** for 5 marks.

The break up for internal assessment shall be:

Written test- 20 marks; Assignment -5 marks Total - 25 marks

B. Scheme of External Examination

3 hrs. examination at the end of the semester

A-Part: 1 mark question two - from each unit B-Part: 5 marks question one - from each unit C-Part: 8 marks question one - from each unit

> Conversion of Marks into Grade Points and Letter Grades

S.No	Marks	Letter Grade	Grade point (GP)	Performance
1	90-100	O	10	Outstanding
2	80-89	A+	9	Excellent
3	70-79	A	8	Very Good
4	60-69	B+	7	Good
5	50-59	В	6	Above Average
6	40-49	С	5	Pass
7	0-39	RA	-	Reappear
8	0	AA	-	Absent

Cumulative Grade Point Average (CGPA)

$$CGPA = \frac{\Sigma (GP \times C)}{\Sigma C}$$

- **GP** = Grade point, **C** = Credit
- CGPA is calculated only for Part-III courses
- CGPA for a semester is awarded on cumulative basis

> Classification

a) First Class with Distinction
 b) First Class
 c CGPA ≥ 7.5*
 c CGPA ≥ 6.0

c) Second Class : $CGPA \ge 5.0$ and < 6.0

d) Third Class : CGPA < 5.0

QUANTUM MECHANICS – II

Learning Objectives

- Formal development of the theory and the properties of angular momenta, both orbital and spin
- To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNIT I: SCATTERING THEORY

Scattering amplitude – Cross sections – Born approximation and its validity – Scattering by a screened coulomb potential – Yukawa potential – Partial wave analysis – Scattering length and Effective range theory for S wave – Optical theorem – Transformation from centre of mass to laboratory frame.

UNIT II: PERTURBATION THEORY

Time dependent perturbation theory – Constant and harmonic perturbations – Fermi Golden rule – Transition probability - Einstein's A and B Coefficients – Adiabatic approximation – Sudden approximation – Semi – classical treatment of an atom with electromagnetic radiation – Selection rules for dipole radiation .

UNIT III: RELATIVISTIC QUANTUM MECHANICS

Klein – Gordon Equation – Charge and Current Densities – Dirac Matrices – Dirac Equation – Plane Wave Solutions – Interpretation of Negative Energy States – Antiparticles – Spin of Electron - Magnetic Moment of an Electron Due to Spin.

UNIT IV: DIRAC EQUATION

Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear covariant – Feynman 's theory of positron (Elementary ideas only without propagation formalism)

UNIT V: CLASSICAL FIELDS AND SECOND QUANTIZATION

Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether's theorem – Quantization of real and complex scalar fields – Creation, Annihilation and

Number operators – Fock states – Second Quantization of K-G field.

UNIT VI: PROFESSIONAL COMPONENTS

Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS

- 1. P.M.Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd Edition, Tata McGraw-Hill, New Delhi, 2010.
- 2. G.Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi, 2009
- 3. L.I.Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968
- 4. V.Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005.
- 5. Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017.

REFERENCE BOOKS

- 1. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, London, 1973.
- 2. B.K. Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 3. Deep Chandra Joshi, Quantum Electrodynamics and Particle Physics, 1stedition, I.K. International Publishing house Pvt. Ltd., 2006
- 4. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan India, New Delhi.
- 5. E.Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970.

WEB SOURCES

- 1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture notes/MIT8_05F13_Chap_09.pdf
- 2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf
- 3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
- 4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf
- 5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf

CONDENSED MATTER PHYSICS

Learning Objectives

- To describe various crystal structures, symmetry and to differentiate different types of bonding.
- To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNIT I: CRYSTAL PHYSICS

Types of lattices - Miller indices - Symmetry elements and allowed rotations - Simple crystal structures - Atomic Packing Factor- Crystal diffraction - Bragg's law - Scattered Wave Amplitude - Reciprocal Lattice (SC,BCC, FCC). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).

UNIT II: LATTICE DYNAMICS

Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umklapp processes.

UNIT III: THEORY OF METALS AND SEMICONDUCTORS

Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz Law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - De Hass-van Alphen effect.

UNIT IV: MAGNETISM

Diamagnetism - Quantum theory of Para-magnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons -

Curie temperature and susceptibility of ferrimagnets - Theory of antiferromagnetic material - Neel temperature.

UNIT V: SUPERCONDUCTIVITY

Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect - Critical field - Critical current - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equations - Coherence length - Isotope effect - Cooper pairs - Bardeen Cooper Schrieffer (BCS) Theory - Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High Temperature Superconductors - SQUIDS.

UNIT VI: PROFESSIONAL COMPONENTS

Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS

- 1. C.Kittel, 1996, Introduction to Solid State Physics, 7th Edition, Wiley, New York.
- 2. Rita John, Solid State Physics, Tata Mc-Graw Hill Publication.
- 3. A.J. Dekker, Solid State Physics, Macmillan India, New Delhi.
- 4. M.Ali Omar, 1974, Elementary Solid State Physics Principle and Applications, Addison Wesley
- 5. H.P. Myers, 1998, Introductory Solid State Physics, 2nd Edition Viva Book, New Delhi.

REFERENCE BOOKS

- 1. J.S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia
- 2. H.M. Rosenburg, 1993, The Solid State, 3rd Edition, Oxford University Press, Oxford.
- 3. J.M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London.
- 4. C.Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford.
- 5. J.P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi.

WEB SOURCES

1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html

- 2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html
- 3. https://www.britannica.com/science/crystal
- 4. https://www.nationalgeographic.org/encyclopedia/magnetism/
- 5. https://www.brainkart.com/article/Super-Conductors_6824/

NUMERICAL METHODS AND PROGRAMMING IN C++

Learning Objectives

- To make students to understand different numerical approaches to solve a problem.
- To understand the basics of programming and its application to solve physical problems

UNIT I -ROOTS OF EQUATION

Roots of equation: Bisection method – False position method – Newton Raphson method – Secant method – Order of convergence. Simultaneous Equations: Existence of solutions- Basic Gauss elimination method – Gauss Jacobi iteration method – Gauss Seidal iteration method – Inverse of a matrix using Gauss elimination method.

UNIT II - CURVE FITTING - INTERPOLATION

Curve fitting: Method of least squares – straight line, fitting a parabola, fitting y = axn, y = aebx type curves – **Interpolation**: Polynomial Interpolation – Lagrange polynomial – Newton polynomial - Forward and Backward differences – Gregory Newton forward and backward interpolation formula for equal intervals – Divided difference – properties of divided differences – Newton's divided differences formula – Lagrange's interpolation formula for unequal interval

UNIT III - EIGEN VALUES, DIFFERENTIATION AND INTEGRATION

Eigenvalues: Power method to find dominant Eigenvalue - Jacobi method **Numerical differentiation**: Numerical differentiation - Formulae for derivatives - Taylors Series Method - Forward backward differences and central difference formula **Numerical Integration**: Newton - cotes formula - Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, - Error estimates in trapezoidal and Simpson's rule - Monte Carlo Method.

UNIT IV - DIFFERENTIAL EQUATIONS

Ordinary differential equation: Solution by Taylor's series — Basic Euler method – Improved and Modified Euler method – Runge Kutta fourth order method – solution of simultaneous first order differential equations and second order differential equations by RK fourth order Method

Partial differential equation: Introduction- Classification of partial differential equation of the 2nd order – Finite Difference approximations - Solution of Laplace's equation – Solution of Poisson's Equation –standard five point formula and diagonal five point formula (Jacobi and Gauss Seidal Methods).

UNIT V: PROGRAMMING IN C++

Program structure and header files - Basic data types- operators - Control Structures: decision making and looping statements. Arrays, Strings, Structures, Pointers and File handling. Application programs – Solution to Algebraic and transcendental equations by Newton Raphson Method - Charging and discharging of a condenser by Euler's Method – Radioactive Decay by Runge Kutta fourth order method - Currents in Wheatstone's bridge by Gauss elimination method - Cauchy's constant by least square method - Evaluation of integral by Simpson's and Monte-Carlo methods - Newton's Law of cooling by Numerical differentiation.

UNIT VI: PROFESSIONAL COMPONENTS

Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

Books for Study

- 1. Introductory methods of numerical analysis, S. S. Sastry, Prentice Hall of India, 2010
- 2. Numerical methods for mathematics, science and engineering, John H. Matthews, Prentice Hall of India, 2nd Edition, 2000
- 3. M.K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering computation, 3 rd edition, New age international (P) Ltd, Chennai, 1998.
- 4. Object Oriented Programming with C++ by E. Balagurusamy, Tata McGraw-Hill, India, 4th Edition

Books for Reference

- 1. Computer Applications in Physics, S. Chandra, M.K. Sharma, Narosa, 3rd Edition,2014
- 2. M. K. Venketraman, Numerical Methods in Science and Engineering 2nd Ed., National Publishing Co., Chennai (2010).
- 3. E. Balagurusamy, Computer Oriented Statistical and Numerical Methods, Macmillan India Ltd, New Delhi (2000).

Related online resources:

- 1. https://youtu.be/LbKKzMag5Rc
- 2. https://youtu.be/Xb9Ypn77LBo
- 3. https://youtu.be/FfqAIlOxkoY

Advanced Physics Experiments – I and Microprocessor 8085 & Microcontroller 8051 Programming

Learning Objectives

- To make students to understand different concepts of physics
- To understand the basics of microprocessor and microcontroller programming Section A (Any 6 Experiments)
- 1. Determination of Cauchy's Constant of the given prism material. Obtain data by doing the Cauchy's Experiment and fitting a straight line using any software.
- 2. Determination Rydberg constant using Hydrogen Vapor lamp source.
- 3. Determination of Magnetoresistance of the given material.
- 4. Determination of Dielectric constant of the given liquid medium using Colpitt's oscillator or LCR circuit.
- 5. Photo Transistor Characteristics.
- 6. Temperature measurement using Si Diode as a Temperature Sensor (Calibrate the sensor using LM35)
- 7. Analysis of rotation and vibration spectrum /Interpretation of vibrational spectra of a given material
- 8. Determination of e/k using Transistors
- 9. Temperature coefficient of a Thermistor using 555 timer or any other method.
- 10. To study I-V Characteristics, Load Response, and Spectral Response of Photovoltaic Solar Cell
- 11. Pspice Simulation: Designing and simulating an Astable Multivibrator using a 555 Timer for the given frequency.
- 12. Pspice Simulation: Simulation of a Zener diode characteristics and voltage regulator.

Section B: Microprocessor 8085 and Microcontroller 8051 Programming (Any 6 Experiments)

All Programs should contain Algorithms and Flowcharts 8085 Microprocessor Programs

1. Arithmetic Operations

- a) Addition of two 8 bit and two 16 bit numbers
- b) Subtraction of two 8 bit and 16 bit numbers
- c) Multiplication of two 8 bit numbers –16-bit result.

2. Data Manipulation

- a) Arrange the given data items in Ascending or Descending order
- b) Finding the Minimum or Maximum value in the given data set.
- c) Search of a given character/number in the given data set.

3. System Call and Rolling character

- a) Calculation of time delay for a given interval.
- b) Roll a given character from Left to Right / Right to Left on the 7 segment displays with the specified time interval.

4. ADC Interfacing and Conversion

a) Interfacing ADC with 8085 - ADC chip Block diagram - 8085 - ADC interfacing diagram

b) Conversion of analog input to digital – Resolution – Graph between input and output.

5. DAC interfacing and Wave form generation.

Interfacing DAC with 8085 - DAC Chip Block diagram - 8085 - DAC - 8085 interfacing diagram

Wave Form Generation using DAC

- a) Square wave with the specified period T
- b) Rectangular Wave with Specified TH and TL
- c) Ramp Wave

8051 Programs using Simulator - MCU8051 IDE (Freeware)

6. Data Transfer Programming

- a) Write an assembly language program to transfer N bytes of data from location A: XX H to location B: YYH in the internal RAM
- b)Write an assembly language program to exchange N bytes of data at location A: XX h and at location B:YY H.

7. Data Manipulation

- a) Write an assembly language program to find the largest element in a given array of N =___ h bytes at location 4000h. Store the largest element at location 4062h.
- b) Write an assembly language program to count number of ones and zeros in an eight bit number.

8. Arithmetic Programming

- a) Write an assembly language program to perform the addition of two 16-bit numbers.
- b) Write an assembly language program to perform the subtraction of two 16-bit numbers.
- c) Write an assembly language program to perform the multiplication of two 8-bit numbers.
- d) Write an assembly language program to find the square of a given number N.

9. Code Conversion

- a) Write an assembly language program to convert a BCD number into ASCII.
- b) Write an assembly language program to convert a ASCII number into Decimal.
- c) Write an assembly language program to convert a decimal number into ASCII
- d) Write an assembly language program to convert a binary (hex) number into decimal.
- e) BCD to 7 Segment Code

10. Counter

Write an assembly language program to implement a decimal counter and show the count on the 7segment display virtual hardware available in the simulator. Write and use a proper delay routine.

SPECTROSCOPY

Learning Objectives

- To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- Understand this important analytical tool

UNIT I: MICROWAVE SPECTROSCOPY

Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass - rotational constant - Effect of isotopic substitution - Non rigid rotator - centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules - linear - symmetric asymmetric top molecules - Instrumentation techniques - block diagram -Information Derived from Rotational Spectra - Problems.

UNIT II: INFRA-RED SPECTROSCOPY

Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H2O and CO2 -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra – Simple applications.

UNIT III: RAMAN SPECTROSCOPY

Theory of Raman Scattering - Classical theory - molecular polarizability - polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule - Stokes and anti-stokes line- SR branch -Raman activity of H2O and CO2 -Mutual exclusion principle- determination of N2O structure -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- Surface Enhanced Raman Spectroscopy.

UNIT IV: RESONANCE SPECTROSCOPY

Nuclear and Electron spin- Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction - interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy - NMR in Chemical industries- MRI Scan

Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR

UNIT V: UV SPECTROSCOPY

Origin of UV spectra - Laws of absorption – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer -Simple applications

TEXT BOOKS

- 1. C.N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.
- 2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi.
- 3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age International Publication.
- 4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.
- 5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers

REFERENCE BOOKS

- 1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.
- 2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.
- 3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York.
- 4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.
- 5. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, Springer Link

WEB SOURCES

- 1. https://www.youtube.com/watch?v=0iQhirTf2PI
- 2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5
- 3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee
- 4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
- 5. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-xcwru

SEWAGE AND WASTE WATER TREATMENT AND REUSE

Learning Objectives

- To gain basic knowledge in sewage and waste water Treatment procedures
- To gain industry exposure and be equipped to take up job.
- To harness entrepreneurial skills.
- To analyze the status of sewage and waste water management in the nearby areas.
- To sensitize the importance of healthy practices in waste water management.

UNIT I:

RECOVERY & REUSE OF WATER

Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication

UNIT II:

DISINFECTION

Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.

UNIT III:

CHEMICAL DISINFECTION

Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity -Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)

UNIT IV:

PHYSICAL DISINFECTION

Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.

UNIT V:

INDUSTRIAL VISIT

Industrial visit – data collection and analysis - presentation

UNIT VI:

PROFESSIONAL COMPONENTS

Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS

- 1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013)
- 2. Design of Water and Wastewater Treatment Systems (CV-424/434), ShashiBushan,)0202(siai icl
- 3. Integrated Water Resources Management, Sarbhukan M M, CBS PUBLICATION (2013)
- 4. C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007
- 5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.

REFERENCE BOOKS

- 1. Handbook of Water and Wastewater Treatment Plant Operations, Frank. R Spellman, CRC Press, 2020
- 2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
- 3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu., 2002.
- 4. W.Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn., McGraw Hill Inc., 1989
- 5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.

WEB SOURCES

- 1. https://www.google.co.in/books/edition/Drinking Water DisinfectionTechniques/HVbNBQAAQBAJ?hl=en
- 2. https://www.meripustak.com/Integrated-Solid-Waste-Management-Engineering-Principles-And-Management-Issues-125648?
- 3. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsACgM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB
- 4. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsACgM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALwwcB
- 5. <a href="https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-890646066127&psc=1&ext_vrnc=hi

