

MANONMANIAM SUNDARANAR UNIVERISTY, TIRUNELVELI-12 SYLLABUS

PG - COURSES – AFFILIATED COLLEGES

Course Structure for M.Sc. Mathematics (Choice Based Credit System)

(with effect from the academic year 2021-2022 onwards)

Semester-IV						
Part	Subject Status	Subject Title	Subject Code	Credit		
3	Core	ADVANCED ALGEBRA II	ZMAM41	4		
3	Core	COMPLEX ANALYSIS	ZMAM42	4		
3	Core	FUNCTIONAL ANALYSIS	ZMAM43	4		
3	Core	TOPOLOGY II	ZMAM44	4		
3	Core	PROJECT	ZMAP41	4		

Total Marks: 100 Internal Exam: 25 marks + External Exam: 75 marks

A. Scheme for internal Assessment:

Maximum marks for written test: 15 marks 3 internal tests, each of I hour duration shall be conducted every semester. To the average of the best two written examinations must be added the marks scored in. The assignment for 5 marks and Seminar for 5 marks

The break up for internal assessment shall be: Written test- 15 marks; Assignment -5 marks; Seminar-5 Marks Total - 25 marks

B. Scheme of External Examination

3 hrs. examination at the end of the semester

- A Part : 1 mark question two from each unit
- B Part: 5 marks question one from each unit
- C Part: 8 marks question one from each unit

Conversion of Marks into Grade Points and Letter Grades

S.No.	Percentage of Marks	Letter Grade	Grade Point	Performance
1	90 - 100	0+	10	Outstanding
2	80 - 89	0	9	Excellent
3	70 - 79	A+	8	Very Good
4	60 - 69	А	7	Good
5	55 - 59	B+	6	Above Average
6	50 - 54	В	5	Pass
7	0 - 49	RA	-	ReAppear
8	Absent	AA	-	Absent

<u>Cumulative Grade Point Average (CGPA)</u>

$CGPA = \frac{\Sigma (GP \times C)}{\Sigma C}$

- **GP** = Grade point, **C** = Credit
- CGPA is calculated only for Part-III courses
- CGPA for a semester is awarded on cumulative basis

\succ Classification

a)	First Class with Distinction	:	CGPA ≥ $7.5*$
b)	First Class	:	$CGPA \ge 6.0$

- c) Second Class
- : CGPA ≥ 6.0
 - : CGPA \geq 5.0 and < 6.0
- d) Third Class : CGPA< 5.0

ADVANCED ALGEBRA II

Objective:To Gain knowledge in Field theory and Galois Theory.

Pre requisite: Knowledge of Groups, Rings and Elementary properties of Fields.

Outcome:Understand the application of Galois Theory in Theory of Equations and Geometry

Text Book: Topics in Algebra, I.N. Herstein (Second edition) Wiley Eastern Limited.

Books for Reference:

- 1. A course in Abstract Algebra (3rdEdition) Vijay.K.Khanna, S.K.Bhambri-Vikas Publishing House-New Delhi.
- 2. **Modern Algebra-Sur**jeetsingh and Qazizameerudin-Vikas Publishing House-New Delhi.
- 3. Fields and Rings- Kaplemsky, Irving (Second Edition)-University of Chicago-Chicago- (1972).

Unit 1:	Extension fields: Extension fields Sections:5.1. Problems:5.1(1-5, 8)
Unit II:	Roots of polynomials. More about roots Sections: 5.3, 5.5. Problems:5.5(1-3)
Unit III:	Elements of Galois Theory Sections:5.6
Unit IV:	Finite fields: Finite fields -Wedderburn's theorem (First proof only) Sections:7.1,7.2 (Theorem 7.2.1-First proof only)
Unit V:	Some special theorems: A theorem of Frobenius-Integral quaternions and the Four-square theorem. Sections:7.3,7.4.

COMPLEX ANALYSIS

Objective: The aim of the paper is to introduce the concepts of Complex Mappings and Complex Integrations

Prerequisite: Basic knowledge in Complex Analysis.

Outcome: Gained knowledge about Conformal Mapping, Analytic functions, Integral Formula and Complex Integrations.

Text Book:Complex Analysis – Lars V. Ahlfors – Tata McGraw Hill (Third Edition)

Book for Reference:

Foundations of Complex Analysis – S.Ponnusamy – Narosa Publishing House 2015 (Second Edition).

- Unit I: Analytic functions: Analytic functions–Polynomials Rational Functions -Power series
 Chapter 2: Section 2.1.2 – 2.1.4&Section2.2.4
 Problems: Chapter 2:2.1.2 (1,4,5,7) 2.2.4 (2-6).
- Unit II: Conformal mappings: Linear Transformations-the linear group-The Cross ratio-Symmetry Chapter 3: Section3.2.3, 3.3.1 – 3.3.3, Problems: Chapter 3: 3.3.1 (4); 3.3.2 (1,4) 3.3.3 (1,2,4);
- **Unit III: Complex Integration:** Line integrals –Line integrals as functions of arc Cauchy's theorem for a Rectangle -Cauchy's theorem in a disk Chapter 4: Section4.1.1, 4.1.3 4.1.5
- Unit IV: Cauchy's Integral formula: Index of a point with respect to closed curve– The integral formula Higher derivatives -Local Properties of Analytical Functions: Removable Singularities -Taylor's Theorem-Zeros and Poles
 Chapter 4: Section4.2.1- 4.2.3; 4. 3.1 4.3.2
 Problems: Chapter 4: 4.2.2 (1-3)
 Problems: Chapter 4:4. 2.3 (1), 4.3.2(2 4)
- Unit V: The Calculus of Residues: The Residue theorem-The Argument Principle– Evaluation of definite integrals. Chapter 4: Section4.5.1 – 4.5.3 Problems: Chapter 4: 4.5.2(1-3), 4.5.3 (1, 3(a-g))

Nesamony Memorial Christian College, Marthandam

FUNCTIONAL ANALYSIS

Objective: The aim of the paper is to introduce the algebraic structure in Analysis.Prerequisite: Basic knowledge in Metric Space, Analysis, Algebra and Topology.Outcome: After learning this paper the student can understand the notion of Banach Spaces and Hilbert Spaces.

Text Book:Introduction to Topology and Modern Analysis- G.F.IMMONS, Mc Graw-Hill International Editions

Books for Reference:

- 1. Functional Analysis Second Edition (2011), TataMcGrawHillEducation Private Ltd. (New Delhi) – WalterRudin.
- Functional Analysis K.ChandrasekaraRao, Narosa Publishing House (2009) New Delhi.

Unit I:	BanachSpaces: Banach Spaces- The definition and some examples-				
	Continuous linear transformations- The HahnBanach Theorem				
	Chapter 9:Sections 46, 47, 48.Problems: Section 46(1,2), 47(1,2) 48(1).				
Unit II:	Imbedding : The Natural Imbedding of N in N**- The open mapping theorem				
	Chapter 9: Sections 49, 50Problems: Section 49 (2,3), 50 (2,3)				
Unit III:	Hilbert Spaces: Conjugate of an operator -Hilbert Spaces-The Definition and some simple properties- Orthogonal compliments				
	Chapter 9:Section 51, Chapter 10: Sections 52, 53				
	Problems: Section 51 (1,3) 52 (4,6), 53 (1-3).				
Unit IV:	The Conjugate space and adjoint: Orthonormal sets-The conjugate space H*Chapter10:Sections54,55,56. Problems:Section54(1,5) 55(1,2), 56(2-4).				
Unit V:	Operators: Self adjoint operators- Normal and Unitary operators- projections.				
	Chapter 10:Sections57,58,59.Problems:Section 57(1,2),58(1,3), 59(1,4).				

TOPOLOGY-II

Objective: The aim is to introduce the concepts of Normal and Regular Spaces .

Prerequisite: Basic Knowledge in Set theory, Analysis, Topology and Functions in Topological Spaces

Outcome: Improves the standard of understanding Set theory, Analysis and Topology and pave the way to do Research in these areas.

Text Book: Topology (Second edition), James R. Munkres, Printice - Hall of India

Books for reference:

- 1. Introduction to General Topology K.D. Joshi Wiley Eastern Limited (1986)
- 2. **Topology** K.Chandrasekara Rao Narosa Publishing House 2009 (New Delhi)
- Unit I: Separation axioms.: The countability axioms Separation axioms. Chapter 4: Sections 30, 31.Problems: Section 30: 2,3 and Section 31: 1-3.
- Unit II: The Urysohn lemma:Normal spaces The Urysohn lemma. Chapter 4: Sections 32, 33.Problems: Section 32: 1, 3, 4 and Section 33: 1-2.
- Unit III: Urysohn and Tietz extension theorem: The Urysohn metrization theorem
 The Tietz extension theorem.
 Chapter 4: Sections 34, 35.
 Problems: Section 34: 1, 3 and Section 35: 1, 3.
- Unit IV: The Tychonoff theorem:TheTychonoff theorem–Local finiteness. Chapter 5: Sections 37 and Chapter 6: Section 39 ProbleSectionms: Section 37: 1,2 and Section 39: 3,5.

Unit V: Baire Spaces: Chapter 8: Section 48, Problems: Section 48: 1,3,4,6

PROJECT

- Project credit is increased, to enrich the research interest and to create innovative ideas among students.
- Since after Post graduation, the students may pursue research and hence they are expected to participate in seminars, workshops and in conferences.

