SYLLABUS

MANONMANIAM SUNDARANAR UNIVERISTY, TIRUNELVELI-12

PG - COURSES - AFFILIATED COLLEGES

Course Structure for

MASTER OF COMPUTER APPLICATIONS (MCA)

(Choice Based Credit System)
(with effect from the academic year 2021- 2022 onwards)

Semester-I				
Part	Subject Status	Subject Title	Subject Code	Credit
III	Core - 1	Mathematical Foundations for Computer Science	ZCAM11	4
	Core - 2	Computer Organization and Architecture	ZCAM12	4
	Core - 3	Design and Analysis of Algorithms Using C++	ZCAM13	4
	Core - 4	Advanced Java Programming	ZCAM14	4
	Core - 5	Object Oriented Analysis and Design Using UML	ZCAM15	4
	Core - 6 Practical - 1	Design and Analysis of Algorithms Using C++ - Lab	ZCAL11	2
	Core - 7 Practical - 2	Advanced Java Programming - Lab	ZCAL12	2

MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE

OBJECTIES

- To provide the strong mathematical foundation that will help the students in writing programs.
- To improve the logical reasoning while programming with computer languages.

OUTCOMES

- Apply the fundamentals of set theory and matrices for the given problem.2.
- Apply the types of distribution, evaluate the mean and variance for the given case study/ problem.
- solve the given problem by applying the Mathematical logic concepts
- Model the given problem by applying the concepts of graph theory.

• Identify and list the different applications of discrete mathematical concepts in computer science.

UNIT – I

SET THEORY AND MATRICES

Sets, Operations on sets, Cardinality of sets, inclusion-exclusion principle, pigeonhole Principle, matrices, finding Eigen values and Eigen vectors.

UNIT – II

MATHEMATICAL LOGIC

Propositional Logic, Applications of Propositional Logic, Propositional Equivalences Predicates and Quantifiers, Nested Quantifiers, Rules of Inference Introduction to Proofs

UNIT – III RELATIONS

Relations and Their Properties, n-ary Relations and Their Application, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings

UNIT - IV

RANDOM VARIABLE AND PROBABILITY DISTRIBUTION

Concept of random variable, discrete probability distributions, continuous probability Distributions, Mean, variance and co-variance and co-variance of random variables. Binomial And normal distribution, Exponential and normal distribution with mean and variables and Problems.

UNIT - V

GRAPH THEORY

Graphs and Graphs models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring

REFERENCES

- 1. Kenneth H Rosen, "Discrete Mathematics and its Applications", McGraw Hill Publications, 8th edition, 2018
- 2. Wolpole Myers Ye "Probability and Statistics for engineers and Scientist" Pearson Education, 9th edition, 2017
- 3. Narasingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall of India Private Limited, 2017.

COMPUTER ORGANIZATION AND ARCHITECTURE

OBJECTIVES

- To understand the basic structure and operation of digital computer.
- To understand the basic processing concepts and bus organization.
- To understand the two types of control unit techniques and the concept of pipelining.
- To understand the different ways of communication with I/O devices and standard I/O interfaces

OUTCOMES

- Understand the functional units of a computer, bus structures and addressing.
- Analyze RAM, ROM, and cache memory and virtual memory concepts.
- Evaluate the modes.
- Know about single bus, multiple bus organization.
- Design and analyze the pipelining concepts and various I/O interfaces.

UNIT I

Introduction: Digital Computers-Basic Organization of a Computer-Historical Perspective.

Digital Logic Circuits:Digital Computers-Logic Gates-Boolean Algebra-Map Simplification-Combinational Circuits – flipflops.

Digital Components:Integrated Ĉircuits – Decoders – Multiplexers – Registers-Shift Registers-Binary Counters.

Data Representation:Data Types – Complements-Fixed-Point Representation-Conversion of Fractions-Floating-Point Representation.

UNIT II

Register Transfer and Microoperations:

Register Transfer-Bus and Memory Transfers-Arithmetic Microoperations-Logic Microoperations-Shift Microoperations-Arithmetic Logic Shift Unit.

Basic Computer Organization and Design: Instruction Codes-Computer Registers-Computer Instructions-Timing and Control-Instruction Cycle.

Programming the Basic Computer: Machine Language-Assembly Language-The Assembler–Subroutines.

UNIT III

Microprogrammed Control: Control Memory-Address Sequencing-Design of Control Unit.

Central Processing Unit: General Register Organization-Stack Organization-Instruction Formats-Addressing Modes-Data Transfer and Manipulation-Program Control-CISC Characteristics-RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing – Pipelining – Arithmetic Pipeline – Instruction – RISC Pipeline – Vector processing – Array Processor.

UNIT IV

Computer Arithmetic:

Addition and Subtraction-Multiplication Algorithms-Division Algorithms-Decimal Arithmetic Unit-Decimal Arithmetic Operations.

Input-Output Organization: Peripheral Devices-Input-Output Interface-Asynchronous Data Transfer-Modes of Transfer-Direct Memory Access (DMA)-Serial Communication-Bus Standards.

UNIT V

Memory Organization:

Memory Hierarchy-Main Memory-Auxiliary Memory-Associative Memory-Cache Memory-Virtual Memory.

Multiprocessors: Characteristics of Multiprocessors-Interconnection Structures.

Reference Books:

- 1. M. Morris Mano, Rajib Mall, "Computer System Architecture— Revised", Third Edition, Pearson India Education Services Pvt. Ltd., 2017.
- 2. John P Heys, "Computer Architecture and Organization", 3rd Edition, McGraw Hill 1998.
- 3. William Stallings, "Computer Organization and Architecture Designing for Performance", 10th Edition, Pearson Education, 2016. 4. Alka Viswa, "Computer Organization and Architecture", Dreamtech Press, 2019.

DESIGN AND ANALYSIS OF ALGORITHMS USING C++

OBJECTIVES

• To learn effective problem solving in computing applications and analyze the algorithmic procedure to determine the computational complexity of algorithms.

OUTCOMES

- It gives stepwise procedure to solve problems.
- The Problems can be broken down into small pieces for program development.
- Efficient approach of solving problems by a model of computations

UNIT - I

Introduction:

Algorithm-Specification-Performance Analysis. Data Structures: Lists -Stacks- Queues – Trees – Graphs – Dictionaries - Priority Queues.

UNIT - II

Divide And Conquer:

General Method-Binary Search- Finding the Maximum And Minimum-Quicksort - Strassen's Matrix Multiplication.

UNIT - III

The Greedy Method:

General Method- 0/1 Knapsack Problem-Job Sequencing with Deadlines -Minimum-Cost Spanning Tree- Single-Source Shortest Paths.

Dynamic Programming: General Method- All-Pairs Shortest Path- 0/1 Knapsack Problem.

UNIT - IV

Basic Traversal and Search Techniques:

Techniques for Binary Trees-Graphs-Connected Components and Spanning Trees.

Backtracking: General Method- N-Queen Problem- Hamiltonian Circuit Problem.

UNIT - V

Branch and Bound:

Method- Assignment Problem - Knapsack Problem.

NP-Hard And NP-Complete Problem: Basic Concepts-Cook's Theorem- -Job Shop Scheduling.

Reference Books:

1. Sandeep Sen and Amit Kumar Design and Analysis of Algorithms: A

- contemporary perspective, Cambridge University Press, 2019.
- 2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", 2nd Edition, Universities Press (India) Private Ltd., 2008
- 3. Aho, Hoporoft and Ullman, "The Design and Analysis of Computer Algorithm", Pearson Education, Delhi, 2001.
- 4. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, 2015.
- 5. Basu S.K., "Design Methods and Analysis of Algorithms", PHI, 2006.
- 6. M.A.Weiss, "Data Structures and algorithm Analysis in C++", Pearson Education, Asia, 2013.

ADVANCED JAVA PROGRAMMING

OBJECTIVES

- To learn the advanced concepts in the java language and java programming environment.
- To design webpage.
- To develop webpage using scripting,

OUTCOMES

- Able to write java programs
- Understand the importance of JDBC
- Apply the Java programming techniques for providing the solution for the practical problems

UNIT I

OOP and Java: Introduction to Java Language – Object Oriented Programming - Classes and Objects – Methods – Constructor - Overloading Methods.

Inheritance:Introduction – Inheritance Types – General form of subclass – subclass constructor – method overriding – abstract and final classes.

Packages and Interfaces: Defining a package – import statement – setting class path – Interfaces – Defining an interface – implementing interfaces

Enumerations, Autoboxing and Annotations: Enumerations — Type Wrappers — Autoboxing — Annotations (metadata)

UNIT II

Input/output: I/O Basics – Byte Streams and Character Streams – Predefined Streams – Reading console input and writing console output – PrintWriter class – Reading and writing Files –Closing a File

Generics and Collections: Generics – Generics example – Generic class with two type parameters – Bounded types – Wildcard arguments – Generic method – Generic constructors – Generic interfaces

Collections: Collections - Collection interfaces - Collection classes - accessing a collection - Working with Maps -Arrays - Vector - Stack - Dictionary - Hashtable - Properties - Using Store () and load ().

UNIT III

Swing: Introduction – Components and Containers – Swing packages – simple Swing application – Event handling – JApplet – Painting in Swing – JLabel – JTextField – JButton – JCheckbox - JRadioButton – JTabbedPane – JScrollPane – JList – JComboBox – Dialogs – JTable – JMenu

JDBC: Java database connectivity, Types of JDBC drivers, Writing JDBC applications – Types of statement objects (Statement, PreparedStatement, and CallableStatement), Types of Resultset – Inserting and updating records – Using Transactions.

UNIT IV

NIO: NIO classes – Buffers – Channels – Path Interface – Files class – Paths class – File attribute interfaces – Reading and writing a File via a Channel – Stream-Based I/O – Path and File System operations

Networking: Networking Classes and Interfaces – InetAddress – TCP/IP – UDP

RMI: Introduction – Remote Interface – java.rmi package – Naming Class – RMI Exception – Creating a simple RMI Client/Server application.

UNIT V

Java Beans: An overview of Java Beans – Properties, Events and Methods – Introspection - Builder Tools – BDK – Persistence – Java Beans API – A Bean Example

Java Servlets: Java Servlets and CGI Programming – Life cycle of a Servlet – Tomcat – A Simple Servlet – javax.servlet - javax.servlet.http – Handling HTTP requests and responses – Working with Cookies – Tracking Sessions.

References:

- 1. Herbert Schildt: Java The Complete Reference, Eleventh Edition, Tata McGraw-Hill, 2019
- 2. Balagurusamy: Programming with Java, Sixth Edition, Tata McGraw-Hill, 2019
- 3. Jim Keogh: J2EE The Complete Reference, Second Edition, Tata McGraw-Hill, 2007
- 4. Patrick Niemeyer and Daniel Leuck : Learning Java, Fourth Edition, O'Reilly Media, 2013

OBJECT ORIENTED ANALYSIS AND DESIGN USING UML

OBJECTIVES

- To understand objects, classes and OO concepts
- To study the various phases of software development, models and design methodologies
- To use UML diagrams for software design
- To develop applications using UML

OUTCOMES

- Analyze the Systems Development Life Cycle
- Identify the basic software requirements UML Modeling
- Apply software design with UML diagrams
- Develop applications using UML

UNIT I

INTRODUCTION

An overview - Object Basics - Object State and Properties - Behavior and Methods - Respond to Message - Encapsulation and Information Hiding - Class Hierarchy - Relationship and Associations - Aggregation - Advanced Topics - Object oriented system development life cycle

UNIT II

METHODOLOGY AND UML

Introduction – Survey – Rumbaugh ,Booch , Jacobson Methods – Patterns – Frameworks- Unified Modeling Language: Introduction - Static and dynamic Models – Modeling - UML Diagrams – UML Class Diagram – Use-case Diagram – UML Dynamic Modeling – Model Management – UML Extensibility

UNIT III

OBJECT-ORIENTED ANALYSIS

Identifying Use cases: Introduction - Business Object Analysis - Use case driven Object oriented analysis - Use-case Model - Documentation - Classification: Introduction - Classification Theory - Naming Classes Language - Constraint-Introduction - Object-Oriented Design Philosophy -UML Object Identifying Object relationships, Attributes and Methods: Super sub class - A part of relationships aggregation - Object responsibility - Methods for ViaNet bank objects.

UNIT IV

OBJECT- ORIENTED DESIGN

Object Oriented Design process and Design axioms: Axioms – corollaries – Design Patterns – Designing Classes: Class visibility – Refining attributes – Methods and protocols – Object – relational system – Multi Database System – Designing Interface Object - Macro and Micro level process – Purpose of a view layer interface.

UNIT V

QUALITY AND TESTING

Quality Assurance – Testing Strategies – Impact of Object Orientation on Testing – Test Plan – Test cases system usability – Usability Testing.

Reference Books:

- 1. Ali Bahrami, "Object Oriented Systems Development", McGraw Hill Education(India) Private Limited, Edition 2008.
- 2. Jaya Mala, S. Geetha, "Object Oriented Analysis and Design using UML", McGraw Hill Education, 2013
- 3. Atul Kahate, "Object Oriented Analysis and Design", Tata McGraw Hill Education, 2004.
- 4. Mahesh P.Matha, "Object-Oriented Analysis and Design Using UML", PHI Learning Private Limited, 2012.
- 5. F. Margret Sharmila, N.Jayanthi, Dr.R.Vasanthi, A.Surya, Dr.R.Palson Kennedy, "Object Oriented Analysis & Design", Charulatha Publications Private Limited, 2019

DESIGN AND ANALYSIS OF ALGORITHMS USING C++ - LAB

Programs should include but not limited to:

- 1. Write a program that implements Stack
- 2. Write a program to implement Queue
- 3. Write a program that implements Singly Linked List.
- 4. Write a program to implement Evaluation of Postfix expression.
- 5. Write a program to implement Priority Queue.
- 6. Write a program that implements Binary Tree Traversals.
- 7. Write a program that implements BFS
- 8. Write a program that implements DFS
- 9. Write a program to implement Binary Search using DAC technique.
- 10. Write a program to implement Quick Sort using DAC technique.
- 11. Write a program that implements Strassen's matrix multiplication using Greedy Method.
- 12. Write a program that implements Knapsack problem using Greedy Method.
- 13. Write a program that implements Prim's Algorithm
- 14. Write a program that implements Kruskal's Algorithm
- 15. Write a program that implements All-pairs Shortest path problem
- 16. Write a program that implements N-Queen Problem

ADVANCED JAVA PROGRAMMING - LAB

- 1. Write a Java application program to demonstrate class with constructors and method overloading.
- 2. Write a Java application program to demonstrate inheritance and method overriding.
- 3. Write a Java application program to demonstrate package with classes and interfaces.
- 4. Write a Java application program to read and write a file using file I/O.
- 5. Write a Java application program to find minimum and maximum of integers and characters using Generics.
- 6. Write a Java application program to implement the Queue operations using the Linked List Class.
- 7. Write a Java program using the swing components with event handling.
- 8. Write a Java program using menus in swing.
- 9. Write a program in Java to create a table and insert and query records in the table.
- 10. Write a program in Java to read a file using Channel I/O.
- 11. Write a program in Java to implement a client/server environment using TCP/IP.
- 12. Write a program in Java to implement a client/server environment using UDP.
- 13. Write a program in Java to implement a client/server using RMI.
- 14. Write a program in Java to create a form and validate a password using Servlet.
- 15. Write a program in Java to develop a simple Java Bean.

