SYLLABUS

MANONMANIAM SUNDARANAR UNIVERISTY, TIRUNELVELI-12

PG - COURSES – AFFILIATED COLLEGES

Course Structure for

M.Sc Mathematics

(Choice Based Credit System) (with effect from the academic year 2017- 2018 onwards)

Semester-III				
Part	Subject Status	Subject Title	Subject Code	Credit
3	Core	Measure and Integration	PMAM31	4
3	Core	Topology – I	PMAM32	4
3	Core	Advanced Algebra - I	PMAM33	4
3	Core	Operations Research	PMAM34	4
3	Core	Research Methodology	PMAM35	4
3	Elective	Calculus of Variation and Integral Equations	PMAE32	3

Nesamony Memorial Christian College, Marthandam

MEASURE AND INTEGRATION

Objective:

- Gain the knowledge of measure spaces and measure interruption
- Understanding the concept of lesbeague measure ,lesbeague integration and signed measure
- To provide the understanding of general measure spaces

Prerequisite:

Basic knowledge of differentiation, integration and continuity of real functions

Outcome:

Knowledge gained about lesbeague theory and general measure spaces and their properties and construction.

Unit I:

LebesgueMeasure:

Lebesgue Measure – Lebesgue Outer Measure – The \Box - Algebra of Lebesgue Measurable sets – Outer and Inner Approximation of Lebesgue Measurable sets – Countable Additivity, Continuity and the Borel – Cantelli Lemma. Chapter 2 : Sec 2.1 – 2.5 Problems : Chapter 2 : 1 – 12 and 17

Unit II:

Lebesgue Measurable functions&Sequential pointwise Limits and related Theorems:

Lebesgue Measurable functions – Sums, Products and Compositions. Sequential pointwise Limits and Simple Approximation – Littlewood's Three Principles, Egoroff's Theorem and Lusin's Theorem **Chapter 3** : Sec 3.1 - 3.3 and

Problems : Chapter 3 : 1 - 3

Unit III:

LebesgueIntegration :

Lebesgue Integration – The Riemann Integral – The Lebesgue Integral of a bounded Measurable function over a set of finite Measure – The Lebesgue Integral of a Measurable non – negative function.

Chapter 4 : Sec 4.1 – 4.3

Unit IV:

Lebesgue Integral & Differentiablility:

The general Lebesgue Integral – Countable Additivity and Continuity of Integration. Differentiation and Integration – Continuity of monotone functions – Differentiability of monotone function: Lebesgue's theorem – Functions of bounded variations: Jordan's theorem.

Chapter 4 :Sec 4.4 & 4.5 **Chapter 6** : Sec 6.1 - 6.3

Unit V:

Absolutely continuous functions & Signed Measures:

Absolutely continuous functions – Integrating Derivatives : Differentiating Indefinite Integrals. Measure and Integration – Measures and Measurable sets – Signed Measures : The Hahn and Jordan Decompositions – The Caratheodory measure induced by an outer measure – The construction of outer measure **Chapter 6 :** Sec 6.4 & 6.5 **Chapter 17 :** Sec : 17.1 - 17.4

Text Book:

Real Analysis, Fourth Edition, H.L.Royden, P.M.Fitzpatrick, PHI Learning Private Ltd.

Book for Reference:

Real Analysis Third Edition (PHI)-H.L.Royden Prentice hall of india private limited –New Delhi (2006).

TOPOLOGY I

Objectives:

- To distinguish space by means of Simple Topological invariants
- Gain the knowledge of constructing spaces by giving and to prove that in certain case, that the result is homeomorphic to standard spaces.

Prerequisite:

• Basic knowledge in Set Theory and Analysis at Undergraduate level.

Outcome:

Knowledge gained about Topological Spaces and the theories based on these spaces.

Unit I:

Topological spaces : Topological spaces – Basis for a topology – The order topology – The subspace topology- Closed sets and limit points. **Chapter 2:** Sections: 12-14 and 16,17. **Problems:** Section 13: 1, 4 and Section 16: 4, 6. Section 17: 1,11-13

Unit II:

Product topology

The product topology on $X \times Y$ – Continuous functions – Product topology Chapter 2: Section 15, 18,19. **Problems**: Section 18: 2,3 and Section 19: 1-3.

Unit III:

Metric Topology :Metric Topology Chapter 2: Section 20, 21 Problems: Section 20:1-3 and section 21:1, 2.

Unit IV:

Some spaces in topological spaces:Connected spaces – Compact spaces. **Chapter 3**: Sections: 23,26 **Problems**: Section 23: 2-4 and Section 26: 3, 6.

Unit V:

Compactness :Limit point compactness – Local compactness. **Chapter 3**: Section 28, 29. **Problems**: Section 29: 2,3.

Problems: Section

Text Book:

Topology (Second edition), James R. Munkres, Printice – Hall of India

Books for Reference:

1. Introduction to general Topology – K.D Joshi Willey Eastern Limited

(1986)

2. Topology - K.ChandrasekaraRaoNarosa Publishing House New Delhi (2009)

ADVANCED ALGEBRA I

Objective:

The aim of the paper is to introduce some of the most fundamental algebraic structures like inner product space, Determinants, etc.

Prerequisites:

Basic knowledge in set theory and Matrix theory

Outcome:

After learning this paper the student can understand,

- The notion of Dual Spaces.
- The algebra of Linear transformations.

Unit I:

Vector spaces:Dual spaces – Inner product spaces. **Sections**: 4.3 and 4.4.

Unit II:

Linear transformations: The Algebra of linear transformations – Characteristic roots – Matrices. **Sections**: 6.1 - 6.3.

Unit III:

Canonical Forms:

Triangular form – Nilpotent form – Jordan form. **Sections**: 6.4 - 6.6.

Unit IV:

Matrices: Trace and transpose – Determinants. **Sections**: 6.8-6.9

Unit V:

Transformations:

Hermitian, unitary and normal transformations. **Sections**: 6.10(Up to Lemma 6.10.11)

Text Book:

Topics in Algebra(Second edition) Wiley Eastern Limited - I.N. Herstein

Book for Reference:

- 1. A course in Abstract algebra (3rd edition)-Vijay.K.Khanna,S.K.Bhambri –Vikas Publishing House –Newdelhi.
- 2. Fields and Rings –Kaplemsky ,Irving (Second edition)-University of Chicago-Chicago -(1972).

OPERATIONS RESEARCH

Objectives:

- To modify rual life into Standard Mathematical Models
- To learn different optimization techniques.
- To know classification of different structured problems.

Prerequisite:

Basic computing knowledge and techniques at undergraduate level.

Outcome:

- Identification of actual problems and its equivalent mathematical models.
- Application to different optimization techniques in real life situations.
- Knowledge gained in utilization of Optimum Resources.

Unit I:

Transportation Models And Its Variants:

Definition Of The Transportation Model – Nontraditional Transportation Model – Transportation Algorithm – The Assignment Model. **Chapter 5** – Sections 5.1, 5.2, 5.3, 5.4 and Exercise problems.

Unit II:

Network Analysis:

Network Definitions – Minimal Spanning Tree Algorithm – Shortest Route Problem – Maximum Flow Model – CPM – PERT.

Chapter 6 – Sections 6.2, 6.3, 6.4, 6.5, 6.7 and Exercise problems.

Unit III:

Integer Linear Programming:

Introduction – Applications – Integer Programming Solutions – Algorithms. **Chapter 9** – Sections 9.1, 9.2, 9.3 and Exercise problems.

Unit IV:

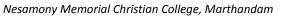
Inventory Theory:

Basic Elements Of An Inventory Model – Deterministic Models: Single Item Stock Model With And Without Price Breaks – Multiple Items Stock Model With Storage Limitations – Probabilistic Models : Continuous Review Model. **Chapter 11** – Sections 11.1, 11.2, 11.3, Chapter 16 – Sections 16.1, 16.2 and Exercise problems.

Unit V:

Queuing Theory:

Basic Elements Of Queuing Model – Role Of Poisson And Exponential Distributions – Pure Birth And Death Models – Specialised Poisson Queues **Chapter 17** – Sections 17.2, 17.3, 17.4, 17.6(upto 17.6.3) and Exercise


problems.

Text Book:

Operations Research(Sixth Edition), Hamdy A. Taha, Prentice Hall Of India Private Limited, New Delhi.

Books for Reference:

- 1. Introduction to Operations Research Fredrick, Shiller, GenraldJ.Literman MC Graw Hill (2017)
- 2. Operations Research KantiSwarup, P.K. Gupta, Man Mohan Sultan Chand and sons. (2016)
- 3. Operations Research (Fifth edition) J.N Sharma, McMillian Publications (2013)

RESEARCH METHODOLOGY

Objectives:

- To understand the Basic aspects in research
- To learn Mathematical and Statistical technique for research
- To acquire basic knowledge about various instruments and techniques in Mathematical research.

Prerequisite:

Basic knowledge in Statistics and related information to be useful for research.

Outcome:

- Training and participating in active research activities for their academic and professional levels.
- Creation of novel ideas and simple technique useful to society(R/D)
- Acquire background knowledge in research publication and thesis writing.

Unit I :

Research Project :

Research Project – Difference between a dissertation and a thesis– Basic requirements of a research degree –Writing a proposal –Ethical considerations **Chapter 5** :Sec: 5.1, 5.2, 5.3, 5.6, 5.13 in Text Book 1.

Unit II :

Components of a Research Project:

Different components of a research project–Literature review – Methodology – Results / data – Conclusions – Bibliography - Appendices. **Chapter 6** : Sec: 6.1-6.6,6.7,6.8.1, 6.9.1,6.11, 6.12, 6.13 in Text Book 1.

Unit III :

Some Special Distributions :

The Gamma and Chi – Square distribution – The normal distribution. **Chapter 3**: Sec: 3.3, 3.4 in Text Book 2. **Exercise Problems:Chapter** 3: 3.28 – 3.33, 3.40 – 3.46.

Unit IV :

Sampling Theory :

Transformation of variables – t & F distributions. Chapter 4:Sec : 4.1 - 4.4 in Text Book 2. Exercise Problems:Chapter 4: 4.1 - 4.8, 4.14 - 4.17, 4.20 - 4.25, 4.34 - 4.41.

Unit V :

Random variables: The MGF technique – Distributions of X and 2 Expectations of functions of random variables-The Central Limit Theorem. **Chapter 4**: Sec : 4.7 – 4.9 in Book 2. **Chapter 5**: Sec 5.4 in Text Book 2 **Exercise Problems: Chapter 4** : 4.68 – 4.74, 4.83 – 4.93. **Exercise Problems: Chapter 5**:, 5.20 – 5.22, 5.25 – 5.27.

Text Book:

- 1. Writing up your University Assignments and Research Projects A Practical handbook, Neil Murray and Geraldine Hughes, McGraw Hill Open University Press.
- 2. Introduction to Mathematical Statistics, Fourth Edition, Robert V. Hogg and Allen T.Craig, Pearson Education Asia.

Books for Reference:

- 1. Research Methodology(2nd revised methods and techniques edition)-C.R.Kothari, New Age International Publications, New Delhi.
- 2. Fundamentals of Mathematics statistics-S.C.Gupta, V.K.Kapoor, Eleventh edition 2002, Sultanchand& sons Publishers, New Delhi.

CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS

Objective:

The objective of this paper is to place at the disposal of the student, the basis of an intelligent working knowledge of a number of facts and techniques which are useful in varied fields of application.

Prerequisite:

Basic knowledge in Elementary Matrix Theory, Quadratic forms, Coordinate Transformations.

Outcome:

Gain knowledge in maxima minima techniques and solution of certain types of Integral equations.

Unit I:

Maxima and Minima :

Calculus of Variations and Applications – Maxima and Minima – The simplest case – Illustrative examples.

Exercises problems: Chapter 2(2, 6, 8 and 18) **Sections:** 2.1-2.4

Unit II:

Lagrange's Multipliers:

Thevariational notations - The more general case - Constraints and Lagrange's Multipliers – Variable end points. **Exercises problems**: Chapter 2(19, 20 and 21) **Sections:** 2.5-2.8

Unit III:

Integral Equations:

Integral Equations – Introduction –Relation between differential and integral equations – The Green's function.

Exercises problems: Chapter 3(1,9, 11) **Sections:** 3.1-3.3

Unit IV:

Fredholm equations:

Linear Equations in cause and effect- The influence function -Fredholm equations with separable kernels – Illustrative Examples. **Exercises problems**: Chapter 3(40 and 43)

Sections: 3.5-3.7

Unit V:

Hilbert Schmidt theory:

Hilbert Schmidt theory – Iterative methods for solving equations of second kind.

Exercises problems: Chapter 3(52 and 53) **Sections**: 3.8-3.9

Text Book:

Methods of Applied Mathematics, Francis B. Hilde brand, Prentice Hall of India, New Delhi.Sections: 2.1 to 2.8 and 3.1 to 3.3, 3.5-3.9

Book for Reference:

Problems and Exercises in integral equations – M.Krarnov, A.Kiselev and G.Makarenko – Mir Publishers, Moscow (1971).

