


MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI-12

SYLLABUS

UG - COURSES – AFFILIATED COLLEGES

Semester-VI							
Part	Subject Status	Subject Title Subject Code		Credit			
III	CORE	LINEAR ALGEBRA		4			
III	CORE	COMPLEX ANALYSIS		4			
III	CORE	MECHANICS		4			
III	ELECTIVE	OPERATIONS RESEARCH II		3			
III	ELECTIVE	GRAPH THEORY		3			
IV	NAAN MUDHALVAN	DATA ANALYTICS USING POWER BI (EDUNET) (SUBSTITUTE COURSE: MATLAB)		2			
V	EXTENSION ACTIVITY ***	NSS/NCC/YRC/RRC/ GAMES & SPORTS/ YOUTH WELFARE ACTIVITIES/ OUTREACH PROGRAMMES/ MIGRATION AWARENESS IN THE TAMIL NADU EDUCATION SYSTEM		1			

Total Marks: 100 Internal Exam: 25 marks + External Exam: 75 marks

A. Scheme for internal Assessment:

Maximum marks for written test: 20 marks

3 internal tests, each of **I hour** duration shall be conducted every semester.

To the average of the **best two** written examinations must be added the marks scored in. The **assignment** for 5 marks.

The break up for internal assessment shall be:

Written test- 20 marks; Assignment -5 marks Total - 25 marks

B. Scheme of External Examination

3 hrs. examination at the end of the semester

A-Part: 1 mark question two - from each unit B-Part: 5 marks question one - from each unit C-Part: 8 marks question one - from each unit

Conversion of Marks into Grade Points and Letter Grades

S.No	Marks	Letter Grade	Grade point (GP)	Performance
1	90-100	O	10	Outstanding
2	80-89	A+	9	Excellent
3	70-79	A	8	Very Good
4	60-69	B+	7	Good
5	50-59	В	6	Above Average
6	40-49	С	5	Pass
7	0-39	RA	-	Reappear
8	0	AA	-	Absent

Cumulative Grade Point Average (CGPA)

$$CGPA = \frac{\Sigma (GP \times C)}{\Sigma C}$$

- **GP** = Grade point, **C** = Credit
- CGPA is calculated only for Part-III courses
- CGPA for a semester is awarded on cumulative basis

> Classification

a) First Class with Distinction
 b) First Class
 c CGPA ≥ 7.5*
 c CGPA ≥ 6.0

c) Second Class : $CGPA \ge 5.0$ and < 6.0

d) Third Class : CGPA < 5.0

LINEAR ALGEBRA

Objectives of the Course

- Vector Spaces, linear dependence and independence of vectors. Dual spaces, Inner product and norm—orthogonalization process.
- Linear transformations. Various operators on vector spaces.

UNIT I

Vector Spaces: Definition and examples— Subspaces— Linear Transformations—Fundamental theorem of homomorphism. (Chapter 5: Sections - 5.1 to 5.3)

UNIT II

Span of a set—Linear Dependence and Independence—Basis and Dimension. (Chapter 5: Sections - 5.4 to 5.6)

UNIT III

Rank and Nullity of a transformation – Matrix of a linear transformation – Inner product space: Definition and examples– Orthogonality – Orthogonal complement. (Chapter 5: Sections - 5.7, 5.8 and Chapter 6: Sections - 6.1 to 6.3)

UNIT IV

Matrices – Elementary transformation – Rank of a matrix – Simultaneous linear equations – Characteristic equation and Cayley-Hamilton Theorem. (Chapter 7: Sections - 7.4 to 7.7)

UNIT V

Eigen values and Eigen vectors – Properties and problems – Bilinear forms – Quadratic forms –Reduction of quadratic form to diagonal form. (Chapter 7: Sections - 7.8 and Chapter 8: Sections - 8.1, 8.2)

Recommended Text

1. S.Arumugam and A. Thangapandi Isaac, Modern Algebra, Scitech, 2014.

Reference Books

- 1. I.N.Herstein, Topicsin Algebra, Wiley Eastern Ltd. Second Edition, 2006.
- 2. N.S.Gopalakrishnan, University Algebra, New Age International Publications, Wiley Eastern Ltd.
- 3. John B. Fraleigh, First course in Algebra, Addison Wesley.
- 4. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 5th Edition, Prentice Hall of India Pvt. Ltd., 2018.
- 5. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 6. S.Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
- 7. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

Website and e-Learning Source

1. https://nptel.ac.in

COMPLEX ANALYSIS

Objectives of the Course

- Apply concept and consequences of analyticity and C-Requations.
- Understand the concept of mappings and transformations.
- Compute complex contour integrals and applying Cauchy"s integral in various versions.
- Understand zeros and singularities of ananalytic function, apply their properties in the evaluation of definite integral.

UNITI

Functions of a Complex variable –Limits –Theorem on limits –Continuity – Derivatives – Differentiation formulas – Cauchy Riemann equation – conditions for differentiability – Polar coordinates – Analytic functions – Harmonic functions. (Chapter 2: Sections - 2.1 to 2.8)

UNIT II

Conformal Mapping – Elementary Transformation – Bilinear Transformation – Cross Ratio – Fixed Points. (Chapter 2: Section - 2.9 and Chapter 3: Sections –3.1 to 3.4)

UNIT III

Complex Integration: Definite Integral – Cauchy"s Theorem– Cauchy integral formula – Higher Derivatives. (Chapter 6: Sections - 6.1 to 6.4)

UNIT IV

Sequence and Series – Power Series – Taylor"s series – Laurent series – Zeros of an Analytic function – Singularities. (Chapter 4: Sections - 4.1, 4.3 and Chapter 7: Sections - 7.1 to 7.4)

UNIT V

Residues— Cauchy Residue theorem —Residue at infinity— Evaluation of Definite Integrals. (Chapter 8: Sections -8.1 to 8.3)

Recommended Text

1. S.Arumugam, A. Thangapandi Isaac and A. Somasundaram, Complex Analysis, Scitech, 2014.

Reference Books

- 1. James Ward Brown and Ruel V.Churchill, Complex Variables and Application, Seventh Edition, Mc-Graw Hill Book Co., International Edition, 2009.
- 2. Theodore W. Gamelan, Complex Analysis, Springer Verlag, 2008
- 3. Joseph Bak and Donald J. Newman, Complex analysis, 2nd Ed., Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., New York, 1997.
- 4. Richard A. Silverman, Introductory Complex Analysis, Dover Publications, 1972.
- 5. S.Ponnusamy and H.Silverman, Complex Variables with Applications, Birkhauser, 2006.

Website and e-Learning Source

1. https://nptel.ac.in

MECHANICS

Objectives of the Course

- Equilibrium of a particle under the action of given forces
- Simple Harmonic Motion
- Projectiles

UNIT I

Force: Newton's laws of motion –Resultant of two forces on a particle - Equilibrium of a Particle: Equilibrium of a particle – Limiting equilibrium of a particle on an inclined plane. (Chapter 2: Section-2.1, 2.1 and Chapter 3: Section-3.1,3.2)

UNIT II

Forces on a Rigid Body: Moment of a Force – General motion of a body – Equivalent systems of forces- Parallel Forces – Forces acting along a Triangle - A specific reduction of Forces: Reduction of coplanar forces into a force and couple – Problems involving frictional forces. (Chapter 4: Section-4.1to 4.5 and Chapter 5: Sections-5.1, 5.2)

UNIT III

Work, Energy and Power: Work – Conservative field of force – Power – Rectilinear Motion under Varying Force: Simple Harmonic Motion - along a horizontal line – along a vertical line. (Chapter11: Sections -11.1 to 11.3; Chapter12: Sections -12.1 to 12.3)

UNIT IV

Projectiles: Forces on a projectile—Projectile projected on an inclined plane. (Chapter 13: Sections -13.1, 13.2)

UNIT V

Central Orbits: General orbits-Central orbit-Conicasa centered orbit. (Chapter16: Sections -16.1to16.3)

Recommended Text

1. P.Duraipandian, Laxmi Duraipandian and Muthamizh Jayapragasm, Mechanics, S.Chand & Company Ltd, 2007.

Reference Books

- 1. A.RuinaandR.Pratap,IntroductiontoStaticsandDynamics, Oxford University Press, 2014.
- 2. S.L. Loney, The Elements of Statics and Dynamics, Cambridge UniversityPress,1904.
- 3. J.L. Meriam, L. G. Kraige and J.N. Bolton, Engineering Mechanics, Dynamics,8thedn,WileyandsonsPvtltd.,NewYork, 2015.
- 4. A.K. Dhiman, P.Dhinam and D.Kulshreshtha, Engineering Mechanics (Staticsand Dynamics), Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.

Website and e-Learning Source

1. https://nptel.ac.in

OPERATIONS RESEARCH II

Objective of the Course

• To teach the techniques for converting the real life and industrial problems as mathematical problems and solving them

UNIT I

Operations Scheduling: Problem of Sequencing –Basic in Sequencing – Gantt Chart – Single Processor Scheduling-SPT, DD and Moore procedure – Flow Shop Scheduling – Two-machine, Three-Machine and *k*-Machine – Processing of Two jobs through *m* machines. (Chapter 10: Sections - 10.1 to 10.8)

UNIT II

Scheduling Techniques: Basic components of Network – Logical Sequencing – Rules of Network construction – Network Scheduling– CPM – PERT. (Chapter 13: Sections - 13.1 to 13.10)

UNIT III

Decision Theory: Two-Person Zero-sum Game – Solution of Two-person Zero-sum Game – The Maximin-Minimax Principle –Saddle point – A Games with Pure strategy, mixed strategy – 2×2 Games – Graphical Solution for $2\times n$ and $m\times2$ Games – Dominance Property. (Chapter 19: Sections - 19.10, 19.11)

UNIT IV

Queueing Theory: Queuing system – Deterministic, Characteristic and Probability Distributions in Queuing system – Classification Queuing models – Probabilistic Queuing models – Poisson-Exponential Models–(M/M/1):(N/FCFS) and (M/M/1): $\infty/FCFS$). (Chapter 20: Sections -20.1 to 20.9)

UNIT V

Inventory Management: Types of Inventory–Inventory Decisions– Costs associated with Inventories – EOQ Models – EOQ and Quantity discount – EOQ and price breaks. (Chapter 22: Sections - 22.1, 22.3, 22.5, 22.8 to 22.11)

Recommended Text

1. Kanti Swarup, P. K. Gupta and Man Mohan, Operations Research, [20th Revised Edition], Sultan Chand & Sons, New Delhi, 2022.

Reference Books

- 1. P.K. Gupta, and D. S. Hira, Operations Research, Sultan Chand & Sons, New Delhi, 2020.
- 2. P. K. Gupta and Man Mohan. Problems in Operations Research [Ninth Edition], Sultan Chand and Sons, New Delhi, 2014.
- 3. S.Kalavathy, Operations Research [Fourth Edition], Vikas Publishing House, Chennai, 2012.

GRAPH THEORY

Objectives of the Course

- To introduce the concepts of Graphs.
- To provide a sound knowledge on Trees and Spanning Trees
- To gain knowledge about Matrices of Graphs and Digraphs.

UNIT I

Introduction – Application of Graphs – Finite and Infinite graphs – Incidence and degree – Isolated vertex, Pendent vertex and Null graph – Isomorphism –Sub graphs – Walks, Paths and Circuits – Connected Graphs – Disconnected Graphs and Components. (Chapter 1: Sections - 1.1to 1.5 and Chapter 2: Sections 2.1, 2.2, 2.4, 2.5)

UNIT II

Euler graphs –Operations on Graphs – More on Euler graphs – Hamiltonian Paths and Circuits – Trees – Some properties on Trees – Pendent vertices in a Tree – Distance and Centersin a Tree – Spanning Trees. (Chapter 2: Sections - 2.6 to 2.9 and Chapter 3: Sections - 3.1 to 3.4, 3.7)

UNIT III

Incidence Matrix – Circuit Matrix – Fundamental Circuit Matrix and Rank of B – Path Matrix – Adjacency Matrix. (Chapter 7: Sections - 7.1, 7.3, 7.4, 7.8, 7.9)

UNIT IV

Planar Graphs – Kuratowski"s Two Graphs – Euler"s formula – - Chromatic Number – Chromatic Partitioning – Chromatic Polynomial. (Chapter 5: Sections - 5.2 to 5.4 and Chapter 8: Sections - 8.1to8.3)

UNIT V

Matchings – Coverings – Four Colour Problem – Definition – Some types of Digraphs – Directed Paths and Connectedness – Euler Digraphs. (Chapter 8: Sections - 8.4 to 8.6; Chapter 9: Sections - 9.1, 9.2, 9.4, 9.5)

Recommended Text

1. Narsingh Deo, Graph Theory with Applications to Engineering & Computer Science, Prentice Hall of India, New Delhi, 1974.

Reference Books

- 1. Frank Harary, Graph Theory, Narosa Publishing House Pvt Ltd, New Delhi, 2001.
- 2. S.Arumugam and S. Ramachandran, Invitation to Graph Theory, Scitech Publications, Chennai, 2001.
- 3. S.P. Rajagopalan and R. Sattanathan, Graph Theory, Margham Publications, Chennai.
- 4. Neeraj Pant and Shahab Faruqi, Graph Theory, CBS Publisher, 2017.

Website and e-Learning Source

1. https://nptel.ac.in

FINANCIAL MATHEMATICS

Objectives of the Course

- Basic knowledge on stock, bond and mutual funds
- To know the importance of life insurance.

UNIT I

Mathematics of Investment: Stocks – Bonds – Mutual funds. (Chapter 5: Sections - 1 to 3)

UNIT II

Mathematics of Investment: Options –Cost of Capital and Ratio. (Chapter 5: Sections - 4 and 5)

Unit III

Mathematics of Return and Risk: Measuring Return and Risk – The Capital Asset Pricing Model. (Chapter 6: Sections -1 and 2)

Unit IV

Mathematics of Insurance: Life Annuities – Life Insurance. (Chapter 7: Sections - 1, 2.1 to 2.8)

Unit V

Mathematics of Insurance: Life Insurance – Property and Casualty Insurance. (Chapter 7: Sections - 2.9 to 2.14, 3)

Recommended Text

1. M.J. Alhabeeb, Mathematical Finance, A John Wiley & Sons, Inc., Publication, 2012.

Reference Books

- 1. S.P. Gupta and S. K. Jain, Financial Mathematics, Sahitya Bhawan Publications, 2022.
- 2. Bimal Jaiswal and Leena S. Shimpi, Financial Mathematics, New Royal Book Company, 2020. 3. Marek Capinski and Tomasz Zastawniak, Mathematics for Finance: An Introduction to Financial Engineering, Springer, 2010.

Website and e-Learning Source

1. https://nptel.ac.in

NAAN MUDHALVAN 5 MAT LAB

Objectives of the Course

- Gain knowledge the software MATLAB
- Gain knowledge of array addressing by using MATLAB built
- Understand the knowledge of script files

UNIT I

Starting MATLAB, MATLAB – Windows working in the command window – Arithmetic operations with scalars – Display formats – Elementary Math Built-in functions – Defining scalar variables – Useful commands for managing variables – Related problems. (Chapter1:Sections - 1.1to 1.7)

UNIT II

Creating Arrays: Creating a one-dimensional array (Vector) - Creating a two-dimensional array (Matrix) - The transpose operator - Array addressing - Using a colon in addressing arrays - Adding elements to existing variables - Deleing elements - Built-in functions for handling arrays - Related problems. (Chapter2: Sections -2.1 to 2.9)

UNIT III

Mathematical Operations with Arrays: Addition and subtraction – Array multiplication – Array division – Element-by-Element Operations – Using arrays in MATLAB Built-in Math functions – Built-in functions for analyzing arrays – Related problems. (Chapter 3: Sections - 3.1 to 3.6)

UNIT IV

Creating and Saving a Script File – Running a Script File – Inputto Script File – Output commands – The save and load commands – Related problems.

(Chapter 1: Section- 1.8 and Chapter 4: Sections - 4.1to4.4)

UNIT V

The Plot command – Thef plot command-Plotting multiple graphs in the same plot – Plots with Logarithmic Axes - Plots with Special Graphics – Histograms – Polar plots – Related problems. (Chapter 5: Sections- 5.1 to 5.3, 5.5, 5.7 to 5.9)

Recommended Text

1. Amos Gilat, MATLAB-An Introduction with Applications, The Ohio State University, Wiley, 2012.

Reference Books

- 1. N.S. Alam and S. S. Alam, Understanding MATLAB: A text book for beginners, TechSar Pvt. Ltd., 2013.
- 2. R.Pratap, Getting started with MATLAB: A quick introduction for Scientists & Engineers, Oxford, 2010.

Website and e-Learning Source

1. https://nptel.ac.in

EXTENSION ACTIVITY

- * NSS/NCC/YRC/RRC/Sports and Games/ Youth Welfare Activities/ Outreach Programmes/ Migration Awareness in the Tamil Nadu Education System
- * Internal: 50 marks and External: 50 marks (total: 100 marks)
- * External examination will be conducted at the end of 6th semester instead of 4th semester as per the existing pattern for extension activity.

