(7 pages)

Reg. No. :

Code No.: 7130

Sub. Code: PPHM 21

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2018.

Second Semester

Physics

MATHEMATICAL PHYSICS - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The Cauchy-Riemann equation in polar form is 1.

 - (a) $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial \theta}$ (b) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}$

- If a function at a point is single valued and has a derivative at every point in some neighbourhood of it in a domain H is called - function
 - complex
- holomorphic
- irregular
- none of these
- The elements of the smallest set capable of 3. generating all the elements of the group are called of the group
 - (a) Inverse element
- Identity element (b)
- Generator
- Reciprocal element
- The dimensionality theorem can be expressed as
 - (a) $\sum li^2 = n$ (b) $\sum li^2 \le n$
 - (c) $\sum li^2 \ge n$ (d) $\sum li^2 = 0$
- - (a) 1

- (c) $(-1)^m \frac{2m!}{2^{2m}(m!)^2}$ (d) $\frac{2m!}{2^{2m}(m!)^2}$
- $H_n(0) =$, if n is an odd integer

(c) 0

(d) $(-1)^n$

Code No.: 7130 Page 2

- In the three dimensional heat flow equation $\nabla^2 u = \frac{1}{h^2} \frac{\partial u}{\partial t}, h^2$ stands for ——— constant
 - (a) Planck's
- diffusivity
- Helmholtz
- Laplacian
- The equation $\frac{\partial^2 \tau}{\partial t^2} + w^2 \tau = 0$ is the equation of zeroth order
 - Laguerre's
- Lagendre
- Hermite
- Bessel
- Using Kronecker delta, $\delta_v^{\ \mu} A^{\mu} = -$
 - A^{μ} (a)

A

- If A^{μ} and B_{μ} are any two vectors, one contra variant and other covariant, then $A^{\mu} B_{\mu}$ is
 - Covariant
 - Contra variant
 - Mixed tensor (c)
 - Invariant

Code No.: 7130 Page 3

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) If f(z) is analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$

Or

- State and prove Cauchy's integral formula.
- Write a short note on cosets. 12.

Or

- Write a short note on reducible and irreducible representations and prove that the two dimensional representations of matrices C_4 is reducible.
- Derive the generating function of Legendre 13. (a) polynomial.

Or

Prove that $2xH_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$.

Code No.: 7130 Page 4

[P.T.O.]

14. (a) The ends A and B of a rod 20 cm long are at temperature 30°C and 80°C respectively. Until steady state prevails. The temperatures at the ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t.

Or

- (b) Derive the D'Alembert's solution of vibrating string.
- 15. (a) Elaborate with suitable example the outer product and contraction of tensors.

Or

(b) Derive the expression for strain, stress and Hooke's law in the form of tensors.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Discuss in detail the necessary and sufficient condition for a function to be analytic.

Or

- (b) (i) Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$ are harmonic functions of x and y, but are not harmonic conjugates.
 - (ii) Prove that the function $f(z) = e^{\sin z}$ is analytic z = x + iy.

Page 5 Code No.: 7130

17. (a) Elaborate in detail the isomorphism and homomorphism.

Or

- (b) (i) Prove that two right cosets of a subgroup in a given group are either equal or else have no elements in common.
 - (ii) Write a short note on conjugate and normal subgroups.
- 18. (a) Derive the power series solution of Legendre differential equation in descending powers of x.

Or

- (b) Using the Hermite polynomial of degreen, derive $H_3(x)$ and $H_4(x)$.
- 19. (a) A thin rectangular plate whose surface is impervious to heat flow has arbitrary distribution of temperature f(x, y) at t = 0, Its four edges x = 0, x = a, y = 0, y = b are kept at zero temperature. Determine the subsequent temperature of the plate after time t.

Or

(b) Derive the complete solution for the vibrations of a rectangular membrane.

Page 6 Code No.: 7130

20. (a) Show that $T = \begin{pmatrix} -x_1 x_2 & -x_2^2 \\ x_1^2 & x_1 x_2 \end{pmatrix}$ is a second order tensor in two dimensions and $S = \begin{pmatrix} -x_1x_2 & -x_2^2 \\ x_1^2 & -x_1x_2 \end{pmatrix} \text{ is not a tensor.}$

Or

Elaborate the applications of tensor to nonrelativistia physics using the tensors in the dynamics of a particle.

> Page 7 Code No.: 7130