(7 pages)

Reg. No. :

Code No. : 30575 E Sub. Code : SMMA 52

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Fifth Semester

Mathematics-Core

REAL ANALYSIS – II

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. If *d* is a metric on *M*, which one of the following is not a metric on *M*?
 - (a) d^2 (b) \sqrt{d}
 - (c) $\frac{d}{1+d}$ (d) 2d

- 2. Which one of the following is not correct?
 - (a) $\operatorname{int}(A \cup B) \supseteq \operatorname{int} A \cup \operatorname{int} B$
 - (b) $\operatorname{int}(A \cup B) \subseteq \operatorname{int} A \cup \operatorname{int} B$
 - (c) $\operatorname{int}(A \cap B) \supseteq \operatorname{int} A \cap \operatorname{int} B$
 - (d) $\operatorname{int}(A \cap B) \subseteq \operatorname{int} A \cap \operatorname{int} B$
- 3. In the usual metric space (R,d), the limit point of

$$\begin{cases} 1, \frac{1}{2}, \frac{1}{3}, \dots \end{cases} is$$
(a) ∞ (b) 1
(c) $\frac{1}{2}$ (d) 0

- 4. Which one of the following is not of second category?
 - (a) [a,b] (b) (a,b)
 - (c) [a,b) (d) Q
- 5. f is continuous at c iff

(a)
$$f(x) = f(c)$$
 (b) $\lim_{x \to c} f(x) = f(c)$

(c) f(x) = c (d) $\lim_{x \to c} f(x) = c$

Page 2 Code No. : 30575 E

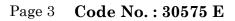
6.	If the function $f: R \to R$ is defined by $f(x) = [x]$
	then $w(f, 10) =$

- 7. In R with discrete metric, which is connected?
 - (a) R (b) [a, b]
 - (c) $(0,\infty)$ (d) {1}
- 8. With usual metric R is
 - (a) not complete
 - (b) compact
 - (c) connected
 - (d) connected and compact

9.
$$\int_{-1}^{1} |x| dx =$$
(a) $\frac{1}{2}$ (b) 0
(c) 2 (d) 1
10.
$$\int_{-1}^{t} \sin x \, dx =$$

10.
$$\int_{0} \sin x \, dx$$

(a)	$\cos t - 1$	(b)	$1 - \cos t$
(c)	$1 + \cos t$	(d)	$-1-\cos t$



PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let (M, d) be a metric space. Define $d_1(x, y) = \min \{1, d(x, y)\}$. Prove that d_1 is a metric on M.

Or

- (b) Show that the intersection of finite collection of open sets is open.
- 12. (a) In R with usual metric prove that D[0,1) = [0,1].

Or

- (b) Let (M,d) be a metric space and $A \subseteq M$. If $x \in \overline{A}$ prove that there exists a sequence (x_n) in A such that $(x_n) \to x$.
- 13. (a) If $f: m_1 \to m_2$ and $g: m_2 \to m_3$ are continuous functions prove that $g \circ f: m_1 \to m_3$ is continuous.

Or

(b) Prove that $f: m_1 \to m_2$ is continuous iff $f^{-1}(F)$ is closed in m_1 whenever F is closed in m_2 .

Page 4 Code No. : 30575 E [P.T.O.] 14. (a) State and prove intermediate value theorem.

Or

- (b) Prove that any closed subspace of a compact metric space is compact.
- 15. (a) Show that x^2 is integrable on any interval [0, K].

Or

(b) State and prove fundamental theorem of calculus.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) d and P are metrices on m. If there exists K > 1 such that $\frac{1}{K}P(x, y) \le d(x, y) \le KP(x, y)$ for all $x, y \in m$ prove that d and P are equivalent.

- Or
- (b) Let (m,d) be a metric space. If $A \subseteq m$ prove that int A is the largest open set contained in A.

Code No. : 30575 E Page 5

17. (a) Prove that a necessary and sufficient condition for a subset A of a complete metric space m to be complete is that A is closed.

\mathbf{Or}

- (b) Prove that for any subset A of a metric space, $d(A) = d(\overline{A})$
- 18. (a) Let (m_1, d_1) and (m_2, d_2) be metric spaces. Let $a \in m_1$. prove that a function $f: m_1 \to m_2$ is continuous at a iff $(x_n) \to a \Rightarrow (f(x_n)) \to f(a)$.

Or

- (b) If D is the set of points of discontinuities of a function $f: R \to R$ show that D is of type F_{σ} .
- 19. (a) Let A be a connected subset of a metric space m. If B is a subset of m such that $A \subseteq B \subseteq \overline{A}$ prove that B is also connected.

 \mathbf{Or}

(b) Prove that any compact subset of a metric space is closed.

Page 6 Code No. : 30575 E

20. (a) State and prove Taylor's theorem.

Or

- (b) (i) State and prove Lagrange's mean value theorem.
 - (ii) State and prove Cauchy's mean value theorem.

Page 7 Code No. : 30575 E