(6 pages)		Reg. No. :
Code No	o.: 6397	Sub. Code: ZCHM 13
M.S		REE EXAMINATION, IBER 2022.
	First	Semester
	Chemis	stry – Core
QUANTU	M MECHANIC	S AND SPECTROSCOPY – I
(For	those who joine	d in July 2021 onwards)
Time : Thr	ee hours	Maximum: 75 marks
	PART A — (1	$0 \times 1 = 10 \text{ marks}$
	Answer A	LL questions.
Choo	se the correct a	nswer:
1. Schrodinger equation is a		
(a)	l st order differer	ntial equation
(b) S	Second order dif	ferential equation
(c)]	Both (a) and (b)	

(d) None of these

- 2. Hamiltonian is given by
 - (a) sum of K.E. and P.E.
 - (b) Difference of K.E. and P.E.
 - (c) Product of K.E. and P.E.
 - (d) Square root of K.E. and P.E.
- In one dimensional problem the energy levels of a bound state system are
 - (a) Discrete
 - (b) Degenerate
 - (c) Non degenerate
 - (d) Discrete and non degenerate
- 4. Who discovered the one-dimensional wave function?
 - (a) Isaac Newton
- (b) Robert Boyle
- (c) Joseph Fourier
- (d) Jean d'Alembert
- 5. For what number of zeros, the approximation is poor?
 - (a) 1

(b) 2

(c) 3

(d) 4

Page 2 Code No.: 6397

6.		ers are adjusted until the wave function is		
	(a) Atomic	(b) Molecular		
	(c) Ionic	(d) Trial		
7.	Which of the following molecule shows rotational spectra?			
	(a) N ₂	(b) H ₂		
	(c) CO ₂	(d) Co		
8.	Which of the following is called heat radiation?			
	(a) Infrared radiation	n		
	(b) Microwave			
	(c) Gamma rays			
	(d) X-rays			
9.	Overtones are mainly observed in ———.			
	(a) Far IR	(b) Mid IR		
	(c) Near IR	(d) Not in the IR region		
10.	In Raman spectroscopy, the radiation lies in the			
	(a) UV Region	(b) X-ray region		
	(c) Visible region	(d) microwave region		

Page 3

Code No.: 6397

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Write a note on Hermitian operator.

Or

- (b) Comment on quantum mechanical treatment of angular momentum.
- 12. (a) The ground state wave function of a harmonic oscillator is $\psi = \exp(-\alpha x^2)$ where $\alpha = \frac{4\pi^2 mE}{h^2}$ and $-\infty \le x \le \infty$. Find the most probable value of x.

Or

- (b) Explain the an harmonicity force constant and its significance.
- 13. (a) Write a note on the approximations used in the HMO method.

Or

(b) Give an account of Heitler - London treatment.

Page 4 Code No.: 6397
[P.T.O.]

14. (a) Write briefly on Boltzmann distribution.

Or

- (b) Give an account of rotational spectra of symmetric top polyatomic molecules.
- (a) Discuss the vibrations in linear molecules and symmetric top molecules.

Or

- (b) (i) Comment on absorption frequencies of any three functional groups for organic compounds.
 - (ii) What is meant by Rayleigh scattering?

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Write a note on postulates of quantum mechanics.

Or

- (b) Discuss in detail the time-dependent and time-independent Schrodinger wave equations.
- 17. (a) Explain briefly the quantum mechanical treatment of simple harmonic oscillator.

Or

Page 5 Code No.: 6397

- (b) (i) Narrate the radial distribution functions.
 - (ii) For a particle in a one-dimensional box of length 'L', find the probability in the region $0 \le X \le L/4$ for n = 1.
- 18. (a) Discuss briefly the linear variation method.

Or

- (b) Write an account on Pauli exclusion principle and slater determinant for He atom.
- 19. (a) Write notes on the following
 - (i) Collision broadening
 - (ii) Doppler broadening.

Or

- b) (i) Comment on transition moment integral.
 - (ii) What are the characteristics of an electromagnetic radiation?
- 20. (a) (i) Stokes lines are more intense than antistokes lines. Explain why?
 - (ii) State and explain Born Oppenheimer approximation.

Or

(b) Describe the theory and principle of vibrational - rotational Raman spectroscopy.

Page 6 Code No.: 6397