(8 pages)

Reg. No.:

Sub. Code: EMMA 21 Code No.: 10725 E

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.

Second Semester

Mathematics - Core

ANALYTICAL GEOMETRY (TWO AND THREE DIMENSIONS)

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. The polar of (ae,0) with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

- The limes y = mx and y = m, x are conjugate diameters of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $m m_1 = -$

- The equation of the line through the pole is
 - $r = \theta$
- r a constant
- θ = a constant
- (d) r=0
- which condition under $\frac{l}{l} = A\cos\theta + B\sin\theta$ is a tangent to the conic $\frac{l}{r} = 1 + e \cos \theta$ is -

 - (a) $A^2 + B^2 + e^2$ (b) $(A e)^2 + B^2 = 1$
 - (c) $A^2 + (B+e)^2 = 1$ (d) A+B=e

Page 2 Code No.: 10725 E

- The distance from the origin to the plane 6x - 3y + 2z - 14 = 0 is — units.
 - (a) 14
- (b) 2

- (d) 6
- The equation of the plane perpendicular to the plane 2x - y + 5z - 2 = 0 is -
 - (a) 2x y + 5z + 2 = 0 (b) 3x + y + z 2 = 0
 - (c) 3x + y z + 2 = 0 (d) -2x + y 5z + 2 = 0
- A point on the line $\frac{x-2}{3} = \frac{y+4}{1} = \frac{z}{-1}$ is -
 - (a) (2,-4,0) (b) (3,1,-1)

 - (c) (2,4,0) (d) (-2,4,0)
- The plane is perpendicular to the line 8. $\frac{x+2}{-1} = \frac{y-3}{1} = \frac{z+4}{3} \ .$
 - (a) -x + y + 3z = 4 (b) 2x 3y + 4z = 1
- - (c) -2x+3y-4z=5 (d) x-y-3z=1

Page 3 Code No.: 10725 E

- radius sphere $x^{2} + y^{2} + z^{2} - 6x - 2y - 4z - 11 = 0$ is -
 - (a) 11

- (b) 7
- (c) 5 (d) 6
- If the plane lx + my + nz = p is a tangent plane to the sphere $x^2 + y^2 + z^2 = r^2$ then $l^2 + m^2 + n^2 =$

 - (a) $\frac{p^2}{r^2}$ (b) $\frac{r^2}{p^2}$
 - (c)

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions by choosing (a) or (b).

11. (a) Find the locus of the poles of normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Or

Explain about the equi-conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Page 4 Code No.: 10725 E

[P.T.O.]

12. (a) Derive the polar equation of a straight line.

Or

- (b) Find the locus of the foot of the perpendiculars drawn from the pole to the tangents to the circle $r = 2a\cos\theta$.
- 13. (a) Find the equation of the plane passing through the points (3,1,2) and (3,4,4) and perpendicular to the plane 5x + y + 4z = 0.

Or

- (b) Find the ratio in which the plane ax + by + cz + d = 0 divides the line joining the points (x, y, z) and (x_2, y_2, z_2) .
- 14. (a) Find the symmetrical form of the equations of the line of intersection of the planes x+5y-z-7=0 and 2x-5y+3z+1=0.

Or

(b) Obtain the value of λ if the lines $\frac{x+2}{4} = \frac{y+1}{2} = \frac{z+\lambda}{3} \quad \text{intersects} \quad \text{the line}$ $\frac{x-6}{2} = \frac{y-5}{3} = \frac{2z-7}{2} \; .$

Page 5 Code No.: 10725 E

15. (a) Find the equation of the sphere which passes through the points (2,3,1), (5,-1,2), (4,3,-1) and (2,5,3).

Or

(b) Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 - 6x + 2z + 1 = 0$ at the point (2, -2, 1) and passes through the origin.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions by choosing (a) or (b).

16. (a) Show that the conjugate lines through a focus of all ellipse are at right angles.

Or

- (b) If e and e_1 are the eccentricities of a hyperbola and its conjugate, then prove: $e^2 + e_1^2 = e^2 \cdot e_1^2$.
- 17. (a) Find the equation of the chord joining the points whose vertical angles are θ_1 and θ_2 on the circle $r = 2a\cos\theta$.

Or

(b) Show that the locus of the intersection of perpendicular tangents to a conic is a circle.

Page 6 Code No. : 10725 E

The foot of the perpendicular drawn from the 18. origin to the plane is (12,-4,-3). Find the equation of the plane.

Or

- Find the equations of the planes passing through the line of intersection of the planes 5x - 3y + 4 = 0 and x + y - 2z + 10 = 0 and which are 1 unit distance from the origin.
- Obtain the image of the point (1,-2,3) in the 19. plane 2x - 3y + 2z + 3 = 0.

Or

Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}$ and $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Find their point of intersection. Also find the plane through them.

Page 7 Code No.: 10725 E

(a) A plane passes through a fixed point (a,b,c)20. and cuts the axes in A,B,C respectively. Show that the locus of the centre of the sphere passing through the points O, A, B, C is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.

Or

Derive the condition that the line $\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}$ touches the sphere $x^2 + y^2 + z^2 + 2ux + 2uy + 2wz + d = 0$ if $l^2 + m^2 + n^2 = 1.$

> Code No. : 10725 E Page 8