(7 pages)

Reg. No.:....

Code No.: 9370

Sub. Code: HMAE 41

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2015.

Fourth Semester

Mathematics

Elective - GRAPH THEORY

(For those who joined in July 2012 onwards)

Time: Three hours

Maximum: 75 marks

www.nmcc.ac.in

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Which of the following is true?
 - (a) An empty graph contains only one point
 - (b) Every walk is a path
 - (c) Subgraph of a connected graph is connected
 - (d) There is a 4-regular graph on 7 vertices

- 2. Which of the following is true?
 - (a) Every cycle is a path
 - (b) A bipartite graph always has an even cycle
 - (c) If a graph is acyclic, then it is a tree
 - (d) Number of spanning trees of a tree on ν vertices is 1
- 3. Which of the following is true?
 - (a) A connected graph always has only one block
 - (b) A tree has only one block
 - (c) In a connected graph any two vertices lie on a common cycle
 - (d) If G is a block having 4 vertices, then any two edges lie on a common cycle
- 4. Which of the following is true?
 - (a) A tree will never be an Euler graph
 - (b) K6 is both Eulerian and Hamiltonian
 - (c) Every Hamiltonian graph is Eulerian
 - (d) Every tree is Hamiltonian

Page 2 Code No.: 9370

- 5. Which of the following is true?
 - (a) Every graph has a perfect matching
 - (b) $K_{4,3}$ has a perfect matching
 - (c) If G is bipartite, then $\chi'(G) = \Delta 1$
 - (d) K12 has a perfect matching
- 6. Which of the following is true?
 - (a) $K_{n,n+2}$ has a perfect matching
 - (b) Every 3-regular graph has a perfect matching
 - (c) A cycle on 9 vertices has a perfect matching
 - (d) Every graph on 2n vertices has a perfect matching
- 7. Which of the following is true?
 - (a) K_n has no independent set
 - (b) Covering number may be equal to the independence number
 - (c) Every independent set is contained in a maximum independent set
 - (d) The Ramsey number r(2,n)=2

Page 3 Code No.: 9370

- 8. Which of the following is true?
 - (a) $K_{3,3}$ has an independent set on 2 vertices
 - (b) independence number is always less than or equal to the covering number
 - (c) For any graph on ν vertices the independence number is less than ν
 - (d) The Ramsey number r(3,3)=5
- 9. Which of the following is true?
 - (a) If G is k-critical, then $\delta \leq k-1$
 - (b) If G is k-critical, then $\delta \ge k$
 - (c) Chromatic number of a cycle on n vertices is n
 - (d) None of the above
- 10. Which of the following is true?
 - (a) Every 4-chromatic graph has 4n vertices
 - (b) K_5 has a subdivision of K_4 as a subgraph.
 - (c) K_5 can be obtained as a subdivision of K_4
 - (d) None of the above

Page 4 Code No.: 9370

[P.T.O.]

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that in a group of two or more people, there are always two people having equal number of friends.

Or

- (b) With usual notations show that any graph contains at least $\varepsilon \nu + \omega$ distinct cycles.
- 12. (a) Draw a graph for which the inequality $K \le K' \le \delta$ is strict.

Or

- (b) If C is a non-hamiltonian graph with $v \ge 3$, then prove that G is degree majorised by some $C_{m,v}$.
- 13. (a) In a bipartite graph, show that the number of edges in a maximum matching is the number of vertices in a minimum covering.

Or

- (b) Prove that every 3-regular graph without cut edges has a perfect matching.
- 14. (a) Prove that a subset S of V is an independent set of G if and only if V S is a covering of G. Hence or otherwise prove that $\alpha + \beta = v$.

Or

(b) Show that $r(k,l) \le {k+l-2 \choose k-1}$.

Page 5 Code No.: 9370

15. (a) Prove that for any graph G, $\chi(G) \leq \Delta + 1$

Or

(b) If G is simple then prove that $\pi_k(G) = \pi_k(G - e) - \pi_k(G\dot{e})$ for any edge e of G.

PART C $-(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

 (a) Show that a graph is bipartite if and only if it contains no odd cycle.

Or

- (b) Prove that $\tau(K_n) = n^{n-2}$.
- 17. (a) Prove that a graph G with $v \ge 3$ is 2-connected if and only if any two vertices of G are connected by at least two internally disjoint paths.

Or

(b) Prove that a nonempty connected graph is Eulerian if and only if it has no vertices of odd degree.

Page 6 Code No.: 9370

18. (a) Show that (i) every k-cube has a perfect matching for $k \ge 2$ (ii) show that a tree has atmost one perfect matching.

Or

- (b) For k > 0, show that every k-regular bipartite graph is 1- factorable and every 2k-regular graph is 2-factorable.
- 19. (a) For any two integers $k \ge 2$ and $l \ge 2$, prove that $r(k,l) \le r(k,l-1) + r(k-1,l)$.

Or

- (b) Write an essay on Ramsey theory.
- 20. (a) Let G be a k-critical graph with a two vertex cut $\{u,v\}$. Then prove that $d(u)+d(v) \ge 3k-5$.

Or

(b) If G is 4-chromatic, then prove that G contains a subdivision of K_4 .

Page 7 Code No.: 9370