Reg. No.:.... (6 pages) Code No.: 6364 Sub. Code: ZMAM 11 M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022. First Semester Mathematics — Core ALGEBRA - I (For those who joined in July 2021 onwards) Time: Three hours Maximum: 75 marks PART A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer: A homomorphism ϕ from G into \overline{G} is said to be an isomorphism if ϕ is – (a) one to one (b) unto (c) not one to one (d) bijective Every subgroup of an abelian group is -

(b) last coset

(d) not normal

(a) right coset

(c) normal

- 3. In a group $b^5 = e$ and $aba^{-1} = a^2$ for some $a, b \in G$. The order of a is ———
 - (a) 5

(b) 10

(c) 0

- (d) divisor of 10
- - (a) 0

- (b) 1
- (c) o(a)
- (d) ∞
- 5. If $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ then $\alpha\beta =$
 - (a) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
- (d) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
- 6. If $o(G) = p^2$ where p is a prime number then G is
 - (a) normal
- (b) left coset
- (c) right coset
- (d) abelian
- 7. The value of $9c_2$ is ————
 - (a) 18

(b) 8

(c) 32

(d) 36

Page 2 Code No.: 6364

- 8. The number of p-sylow subgroups in G, for a given prime is of the form ———
 - (a) 1+kp
- (b) 1 kp

(c) kp

- (d) $\frac{1+k}{p}$
- 9. If $\phi \neq 1 \in G$ where G is an abelian group then $\sum_{g \in G} \phi(g) = \frac{1}{2}$
 - (a) 1

(b) 2

(c) oc

- (d) 0
- 10. The number of non-isomorphic abelian groups of order p^n , p an prime, equals the number of partitions of ————.
 - (a) $\frac{n}{2}$

(b) n!

(c) n

(d) n-1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If G is a finite group and N is a normal subgroup of G, then prove that o(G/N) = o(G)/o(N).

Or

Page 3 Code No.: 6364

- (b) If ϕ is a homomorphism of G into \overline{G} , then prove that:
 - (i) $\phi(e) = \overline{e}$, the unit element of \overline{G} .
 - (ii) $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$
- 12. (a) Show that $\mathcal{I}(G) \approx G/Z$, where $\mathcal{I}(G)$ is the group of inner automorphisms of G, and Z is the center of G.

Or

- (b) If H is a subgroup of G show that for every $g \in G$, gHg^{-1} is a subgroup of G.
- 13. (a) Prove that N(a) is a subgroup of G.

Or

- (b) If $o(G) = p^n$ where p is a prime number, then prove that $Z(G) \neq (e)$.
- 14. (a) Prove that $n(k) = 1 + p + ... + p^{k-1}$.

Or

(b) If $p^m \mid o(G), p^{m+1} \not\prec o(G)$, then prove that G has a subgroup of order p^m .

Page 4 Code No.: 6364

[P.T.O.]

15. (a) Let G be a group and suppose that G is the integral direct production of $N_1,...,N_n$. Let $T=N_1\times N_2\times ...\times N_n$. Then prove that G and T are isomorphic.

Or

(b) If G and G' are isomorphic abelian groups, then prove that for every integer s, G(s), and G'(s) are isomorphic.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) State and prove Sylow's theorem for Abelian groups.

Or

- (b) Let ϕ be a homomorphism of G onto \overline{G} with kernel K, and let \overline{N} be a normal subgroup of $\overline{G}, N = \{x \in G \mid \phi(x) \in \overline{N}\}$. Then prove that $G/N \approx \overline{G}/\overline{N}$. Equivalently. $G/N \approx (G/K)/(N/K)$.
- 17. (a) If G is a group, then prove that $\mathcal{A}(G)$, the set of automorphisms of G, is also a group.

Or

(b) Let G be a finite group, T an automorphism of G with the property that xT = x iff x = e. Suppose further that $T^2 = 1$ prove that G must be abelian.

Page 5 Code No.: 6364

- 18. (a) State and prove Cauchy theorem.
 - (b) Prove : $o(G) = \sum \frac{o(G)}{o(N(a))}$ where this sum runs over one element a in each conjugate class.
- 19. (a) State and prove Sylow theorem.

Or

- (b) Prove that S_{p^k} has a p-sylow subgroup.
- 20. (a) Let G be an abelian group of order p^n , p a prime. Suppose that $G = A_1 \times A_2 \times ... \times A_k$, where each $A_i = (a_i)$ is cyclic of order p^{n_i} , and $n_1 \ge n_2 \ge ... \ge n_k > 0$. If m is an integer such that $n_t > m \ge n_{t+1}$ then prove that $G(p^m) = B_1 \times ... \times B_t \times A_{t+1} \times ... \times A_k$ where B_i is cyclic of order p^m , generated by $a_i^{p^{n_i-m}}$, for $i \le t$. The order of $G(p^m)$ is p^u , where $u = mt \sum_{i=t+1}^k n_i$.

Or

(b) Show that the two abelian groups of order p^n are isomorphic iff they have the same invariants.

Page 6 Code No.: 6364