(6 pages)

Reg. No. :

Code No. : SS 30573 E Sub. Code : SMMA 41

B.Sc. (CBCS) DEGREE (Special Supplementary) EXAMINATION, APRIL 2020.

Fourth Semester

Mathematics - Core

ABSTRACT ALGEBRA – I

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. For any two elements $a, b \in G$ the statement $(ab)^2 = a^2b^2$ is true if —

- (a) G is abelian (b) G is non abelian
- (c) G is any group (d) G is finite
- 2. The order of an element 2 in (z, +) is ______
 - (a) 2 (b) infinite
 - (c) 1 (d) -2

3.	Let (Let G be a group of prime order. Then					
	(a) G has no subgroup(b) G has no proper subgroups						
	(c)	c) <i>G</i> has more than 2 subgroups					
	(d)	G is non abelian					
4.	Subg	group of a cyclic group is ————					
	(a)	not cyclic	(b)	a subgroup			
	(c)	cyclic	(d)	none			
5.	The order of the group $rac{m{z}_6}{\langle 3 angle}$ is						
	(a)	1	(b)	2			
	(c)	3	(d)	Infinite			
6.	Aut	<i>Z</i> ₈ ≅ −−−−−					
	(a)	V_4	(b)	V_2			
	(c)	Z_4	(d)	V_8			
7.	Every subgroup of (z_n, \oplus) is ———						
	(a)	a subgroup	(b)	normal group			
	(c)	prime	(d)	none			
	Page 2 Code No. : SS 30573 E						

8.	An with	example of an out identify	infinite	commutative ring		
	(a)	$\left(Z,+,\cdot ight)$	(b)	$\left({{Z}_{n}},\oplus ,\odot ight)$		
	(c)	$(2Z,+,\cdot)$	(d)	$\left(Q,+,\cdot ight)$		
9.	Let R be a ring and $a \in R$. Then $Ra = \{xa \mid x \in R\}$ is a					
	(a)	right ideal	(b)	left ideal		
	(c)	ideal	(d)	None		
10.	A ł	omomorphism i	s 1-1	\Leftrightarrow its Kernal is		
	(a)	$\{0\}$	(b)	$\{1\}$		
	(c)	$rac{\langle 0 angle}{R}$	(d)	none		

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let G be a group. Let $H_a = \{x | x \in G \text{ and } ax = xa\}$. Then prove that H_a is a subgroup of G.

Or

(b) Prove that (Z_n, \oplus) is a group.

Page 3 Code No. : SS 30573 E

12. (a) Prove that a subgroup of a cyclic group is cyclic.

\mathbf{Or}

- (b) Let G be a group and 'a' be an element of order n in G. Show that $a^m = e$ iff n divides m.
- 13. (a) Show that if a group G has exactly one subgroup H of given order, then H is a normal subgroup of G.

\mathbf{Or}

- (b) State and prove Fermat's theorem.
- 14. (a) Prove that a finite commutative ring R without zero divisors is a field.

Or

- (b) Prove that the characteristic of an integral domain is either 0 or a prime number.
- 15. (a) Define homomorphism of rings. Give an example.

Or

(b) Define Kernal of a homomorphism. Let f : R → R' be a homomorphism. Let K be the Kernal of f. Then prove that K is an ideal of R.

> Page 4 Code No. : SS 30573 E [P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let A and B be two subgroups of a group G. Prove that AB is a subgroup of G if and only if AB = BA.

 \mathbf{Or}

- (b) Prove that the union of two subgroups of a group G is a subgroup if and only if one is contained in the other.
- 17. (a) Let G be a group and $a, b \in G$. Then prove the following :
 - (i) order of a =order of a^{-1}
 - (ii) order of $a = \text{order of } b^{-1}ab$
 - (iii) order of ab = order of ba.

Or

- (b) Let *G* be a group and *H* be a subgroup of *G*. Then prove the following :
 - (i) $a \in H \Rightarrow aH = H$
 - (ii) $aH = bH \Rightarrow a^{-1}b \in H$
 - (iii) $a \in bH \Rightarrow a^{-1} \in Hb^{-1}$
 - (iv) $a \in bH \Rightarrow aH = bH$.

Page 5 Code No. : SS 30573 E

18. (a) State and prove the fundamental theorem of homomorphism for groups.

Or

- (b) State and prove Cayley's theorem.
- 19. (a) Prove : Z_n is an integral domain $\Leftrightarrow n$ is a prime.

 \mathbf{Or}

- (b) Let R be a commutative ring with identity prove an ideal P of R is prime $\Leftrightarrow \frac{R}{P}$ is an integral domain.
- 20. (a) Prove that every integral domain can be embedded in a field.

Or

(b) State and prove division algorithm.

Page 6 Code No. : SS 30573 E