Reg. No. : (8 pages)

Code No.: 20652 E Sub. Code: EMMA 11

- B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First Semester

Mathematics - Core

ALGEBRA AND TRIGONOMETRY

(For those who joined in July 2023 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer.

- One root of $x^4 3x + 1 = 0$ lies between
 - (a) 2 and 3
 - (b) 2 and 2.5
 - 2.5 and 3
 - (d) 1 and 2

- 2. If f(x) = 0 is a reciprocal equation of first type and odd degree, then ---- is a factor of f(x).

 - (a) x+1 (b) (x-1)
 - (c) $x^2 1$ (d) $x^2 + 1$
- The value of e is -
 - (a) 2.718
- (b) 2.738
- (c) 2.371
- (d) 2.387
- The coefficient of x^n in the expansion of (2-4x)

- 2^{2n}
- (d) 22n+1
- 5. $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ and $|A| \neq 0$ then $A^{-1} = -$
 - (a) $\frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ (b) $\frac{1}{|A|} \begin{pmatrix} -d & b \\ c & -a \end{pmatrix}$
 - (c) $\frac{1}{|A|} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$ (d) $\frac{1}{|A|} \begin{pmatrix} -d & b \\ c & -a \end{pmatrix}$

Page 2 Code No.: 20652 E

- The characteristic polynamial of I_2 is
 - (a) $x^2 + 2x + 1$
 - (b) $x^2 2x + 1$
 - (c) $x^2 x 1$
 - (d) $x^2 + x + 1$
- 7. If $x = \cos \theta + i \sin \theta$, then $x^n \frac{1}{x^n}$
 - (a) $2\cos\theta$
- (b) $2i\sin\theta$
- (c) $2i\sin n\theta$
- (d) $2\cos n\theta$
- 1 degree = ____ minutes.
 - (a) 60
- (b) 30
- (c) 45

- (d) 90
- The value of $\cosh\left(\frac{i\pi}{2}\right)$ is
 - (a) 1
- (b) 0

- (d) -i
- Page 3 Code No.: 20652 E

- 10. The value of $\log i$ is -

 - (a) $i\frac{\pi}{2}$ (b) $i\left(\frac{\pi}{2} + 2n\pi\right)$
 - (c) $i(4n-1)\frac{\pi}{2}$ (d) $\frac{\pi}{2}$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) Solve $4x^4 - 20x^3 + 33x^2 - 20x + 4 = 0$.

Or

- (b) Increase the roots of the equation $4x^5 - 2x^3 + 7x - 3 = 0$ by 2.
- Find the coefficient of x^n in the expansion of $(1+x)e^{(1+x)}$ in ascending powers of x.

Or

Prove that

$$\log 2 - \frac{(\log 2)^2}{2!} + \frac{(\log 2)^3}{3!} - \dots = \frac{1}{2}$$

Page 4 Code No.: 20652 E [P.T.O.]

13. (a) Show that the non-singular matrix $A=\begin{pmatrix}1&2\\3&1\end{pmatrix} \quad \text{satisfies} \quad \text{the equation}$ $A^2-2A-5I=0 \text{ . Hence evaluate } A^{-1} \text{ .}$

Or

- (b) Find the characteristic roots of the matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$
- 14. (a) Prove that $2^{5}\cos^{6}\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$

Or

- (b) Expand $\sin 7\theta$ in powers of $\cos \theta$ and $\sin \theta$.
- 15. (a) Prove that $\frac{1+\tanh x}{1-\tanh x} = \cosh 2x + \sinh 2x$.

Or

(b) If $i^{a+ib}=a+ib$, then prove that $a^2+b^2=e^{-b(4n+1)\pi} \ .$

Page 5 Code No.: 20652 E

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

16. (a) Solve $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.

Or

- (b) Find the positive root of x³-3x+1=0 correct to three places of decimals.
- 17. (a) Show that the coefficient of x^n in the expansion of e^{ex} is $\frac{1}{n!} \left(\frac{1^n}{1!} + \frac{2^n}{2!} + \frac{3^n}{3!} + \dots \right)$ also show that
 - (i) $\frac{1^3}{1!} + \frac{2^3}{2!} + \dots = 5e$
 - (ii) $\frac{1^4}{1!} + \frac{2^4}{2!} + \frac{3^4}{3!} + \dots = 15e$

Or

(b) Prove that $s = \sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!} = \frac{e}{2} + \frac{2}{e}$.

Page 6 Code No.: 20652 E

18. (a) Using Cayley-Hamilton theorem, find the inverse of a matrix, $\begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{pmatrix}$.

Or

- Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.
- 19. (a) Prove that $\cos 8\theta = 128\cos^8\theta - 256\cos^6\theta + 160\cos^4\theta - 32\cos^2\theta + 1$

Or

- Prove that $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$ $\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta$
- 20. (a) Prove that $u = \log_{\sigma} \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$ $\cosh u = \sec \theta$.

Or

Page 7 Code No.: 20652 E

(b) If $\cos(x+iy) = r(\cos\alpha + i\sin\alpha)$, prove that $y = \frac{1}{2} \log \left[\frac{\sin(x - \alpha)}{\sin(x + \alpha)} \right].$

Page 8 Code No.: 20652 E