(8 pages) Re	g. No. :	3	A series $\sum a_n$ is called ———— convergent if
	Sub. Code: WMAM 12 E EXAMINATION,	4.	$\sum a_n \text{ converges but } \sum a_n \text{ diverges.}$ (a) absolutely (b) conditionally (c) equally (d) unequally The value of $\int_0^a f dx$ is ————
First Semester Mathematics — Core REAL ANALYSIS — I		(a) 1 (b) ∞ (c) 0 (d) fx 5. Name the condition that f satisfies on [a, b] that if for every ∈> 0, there exists a partition P _∈ such that P finer than P _∈ implies	
Time : Three hours $ \begin{array}{c} {\rm PARTA-(15\times} \\ {\rm AnswerALL} \end{array} $ Choose the correct answ	hose who joined in July 2023 onwards) e hours Maximum: 75 marks (a) (b) PART A — $(15 \times 1 = 15 \text{ marks})$ Answer ALL questions. e the correct answer: (a)		that T in the state T_{ϵ} is in present to α . (a) Riemann's (b) Cauchy (c) Euler (d) Newton's If $f \in R(\alpha)$ and $g \in R(\alpha)$, where $\alpha \uparrow$ on $[a, b]$ then the product $fg \in$ (a) $R(\alpha)^2$ (b) $R(\alpha).R(\alpha)$ (c) $2R(\alpha)$ (d) $R(\alpha)$
said to be of ———————————————————————————————————	(b) less than	7.	One of the sufficient condition for the existence of the Riemann integral $\int_a^b f(x) dx$ is — on $[a, b]$. (a) f is of bounded variation (b) f is not continuous (c) f unbounded (d) f is of unbounded variation
			Page 2 Code No. : 7752

- If α be continuous and $f \nearrow$ on [a, b], then there exists a point x_0 in [a, b] such that $\int_{a}^{b} f(x) d\alpha(x) = f(a) \int_{a}^{x_{0}} d\alpha(x) + \dots$ (a) $f(a) \int_{x_{0}}^{b} d\alpha(x)$ (b) $f(b) \int_{x_{0}}^{b} d\alpha(x)$ (c) $\int_{1}^{x_{0}} f(b) d\alpha(x)$ (d) $\int_{x_{0}}^{b} d\alpha(x)$
- For $f \in R$ and α a continuous function on [a, b]whose derivative α' is Riemann integrable on $\int f(x)d\alpha(x)$ [a, b] then $\int f(x)\alpha'(x)\,dx\,.$
- The double series is said to be to the sum a if $\lim_{p, q\to 0} S(p, q) = a$.
 - (b) diverge (a) converge (c) oscillate
 - (d) all
- 11. The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ is
 - (a) 0 (b) 1
 - (d) 2 (c) oo

Code No.: 7752 Page 3

- 12. The series $\sum (-1)^{n+1} . n$ is
 - (a) (C,1) summable
 - (b) not (C, 1) summable
 - (c) Summable
- (d) not summable
- 13. A sequence $\{f_n\}$ is said to be on S if there exists a constant M>0 such that $|f_n(x)| \le M$ for all x in S and all n.
 - (a) Limit

- (b) Converge
- (c) Uniformly bounded (d) Continuous
- 14. A sequence of functions $\{f_n\}$ is said to be ——— on T if $\{f_n\}$ is pointwise convergent and uniformly bounded on T.
 - (a) integrable
 - (b) converge
 - (c) boundedly convergent
 - (d) divergent
- 15. For the function $f_n(x) = x^n$ in $0 \le x \le 1$ which is continuous with discontinuous limit, the convergence is ——— on [0, 1].
 - (a) uniform
- (b) not uniform
- (c) both (a) and (b)
 - (d) cannot say

Code No.: 7752 Page 4

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If f is monotonic on [a, b], then prove that the set of all discontinuities of f is countable.

Or '

- (b) Assume that f and g are each of bounded variation on [a, b]. Then prove that their sum and product are also of bounded variation.
- 17. (a) Assume that $\alpha \nearrow$ on [a, b] If $f \in R(\alpha)$ on [a, b] then prove that $f^2 \in R(\alpha)$ on [a, b].

Or

- (b) If $f, g \in R(\alpha)$ on [a, b] then show that $C_1 f + C_2 g \in R(\alpha)$ on [a, b] for any two constants C_1 and C_2 and also $\int\limits_a^b (C_1 f + C_2 g) d\alpha = C_1 \int\limits_a^b f d\alpha + C_2 \int\limits_a^b g d\alpha \,.$
- 18. (a) If f is continuous on [a, b] and if α is of bounded variation on [a, b] then show that $f \in R(\alpha)$ on [a, b].

Or

(b) State and prove second mean value theorem for Riemann integrals.

Page 5 Code No.: 7752

19. (a) Prove that if a series is convergent with sum S, then it is also (C,1) summable with Cesaro sum S.

Or

- (b) Let $a_n \ge 0$ then prove that the product $\prod (1-a_n)$ converges if and only if the series $\sum a_n$ converges.
- (a) State and prove Dirichlet's test for uniform convergence.

Or

(b) Assume $f_n \to f$ uniformly on S. If each f_n is continuous at a point C of S then prove that the limit function f is also continuous at C.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b)

21. (a) Let f be of bounded variation on [a, b]. If $x \in (a, b]$, let $V(x) = V_f(a, x)$ and put V(a) = 0. Then prove that every point of continuity of f is also a point of continuity of V prove converge also.

Or

(b) State and prove Riemann's theorem on conditionally convergent series.

Page 6 Code No.: 7752

- 22. (a) Assume that α ? on [a, b]. Then prove that the following statements are equivalent.
 - (i) $f \in R(\alpha)$ on [a, b]
 - (ii) f satisfies Riemann's condition with respect to α on [a, b]
 - (iii) $\underline{I}(f,\alpha) = \overline{I}(f,\alpha)$.

Or

- (b) Let $f \in R(\alpha)$ on [a,b] and let g be a strictly monotonic continuous function defined on an interval S having end points c and d. Assume that a = g(c), b = g(d). Let h and β be the composite functions defined as $h(x) = f[g(x)], \quad \beta(x) = \alpha[g(x)]$ if $x \in S$. Then prove that $h \in R(\beta)$ on S and $\int_a^b f d\alpha = \int_c^d h \, d\beta$
- 23. (a) State and prove theorem on change of variable in Riemann integral.

Or

(b) Assume that α is of bounded variation on [a, b]. Let V(x) denote the total variation of α on [a, x] if $a < x \le b$ and V(a) = 0. Let f be defined and bounded on [a, b]. If $f \in R(\alpha)$ on [a, b] then prove that $f \in R(V)$ on [a, b].

Page 7 Code No.: 7752

24. (a) Write Bernstein's theorem and prove it.

Or

- (b) State and prove Merten's theorem.
- 25. (a) State and prove three examples of sequences of real valued functions.

Or

(b) State and prove the theorem on Cauchy condition for uniform convergence.

Page 8

Code No.: 7752