(8 pages)

Reg. No.:....

Maximum: 75 marks

Code No.: 7832 Sub. Code: WCHM 32

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

Third Semester

Chemistry — Core

COORDINATION CHEMISTRY — I

(For those who joined in July 2023 onwards)

Time: Three hours Maximu

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The spectrochemical series is an arrangement of ligands based on
 - (a) Their color
 - (b) Their size
 - (c) Their ability to split d-orbital energies
 - (d) Their magnetic properties

- 2. Which complex is expected to show Jahn-teller distortion?
 - (a) $[Co(NH_3)_6]^{3+}$
- (b) $[Mn(H_2O)_6]^{2+}$
- (c) $[Cu(NH_3)_6]^{2+}$
- (d) [Ni(H₂O)₆]²⁺
- 3. In tetrahedral coordination complexes, the d-orbitals split into
 - (a) t2 and e
- (b) eg and eu
- (c) t2g and eg
- (d) e and e tig
- 4. Which term symbol corresponds to the ground state of a d²ion?
 - (a) ³F

(b) ²D

(c) ¹S

- (d) ³P
- 5. The Tanabe-Sugano diagram is used to find the energy difference between
 - (a) Two different metal ions
 - (b) Two different ligands
 - (c) Spin-allowed and spin-forbidden transitions
 - (d) High-spin and low-spin states in a given configuration

Page 2 Code No. : 7832

- Magnetic movement values can be used to distinguish between
 - (a) Oh and Td complexes
 - (b) Square planar and tetrahedral complexes
 - High-spin and low-spin complexes
 - (d) All of the above
- Which of the following is true for inert complexes?
 - (a) They undergo rapid ligand substitution
 - (b) They have low activation energy for ligand exchange
 - They exhibit slow ligand substitution
 - They are highly reactive
- The macrocyclic effect refers to the increased stability of complexes formed by
 - (a) Large ligands
 - Chelating ligands
 - Ligands forming cyclic structures
 - Monodentate ligands
- The determination of stability constant by polarographic method involves measuring
 - (a) Electrode potential
 - (b) Current as a function of applied voltage
 - Absorbance of the complex
 - (d) The solubility of the complex

Code No.: 7832 Page 3

- The dissociative (S_N1) mechanism in coordination complexes is characterized by
 - (a) Simultaneous bond formation and bond cleavage
 - (b) Formation of a five-coordinate transition state
 - The rate-determining step involves loss of a ligand
 - (d) Involves nucleophilic attack as the first step
- Which of the following ligands will most likely cause a high trans effect in a square planar complex?
 - OH

(b) CN-

NH₃

- (d) H₂O
- Which of the following tests is used to distinguish between cis and trans isomers of square planar complexes?
 - (a) Kurnakov test
- (b) Beilstein test
- Silver mirror test (d) Benedict's test
- According to the Marcus-Hush theory, the rate of electron transfer depends on which of the following factors?
 - (a) Free energy change of the reaction
 - Distance between donor and acceptor
 - Reorganization energy
 - (d) All of the above

Code No.: 7832 Page 4

[P.T.O]

- 14. The term "thexi states" refers to
 - (a) Ground state of a complex
 - (b) Excited state of a complex
 - (c) Transition state in a reaction
 - (d) Intermediate in electron transfer
- 15. The photophysical properties of [Ru(bpy)₃]²⁺ are primarily due to
 - (a) Metal-centered transitions
 - (b) Ligand-centered transitions
 - (c) Metal-to-ligand charge transfer (MLCT)
 - (d) Ligand-to-metal charge transfer (LMCT)

PART B —
$$(5 \times 4 = 20 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

16. (a) Describe the process of calculating crystal field stabilization energy (CFSE) for a d⁴ high-spin octahedral complex.

Or

(b) Discuss the factors that influence the crystal field splitting energy in square planar complexes.

Page 5 Code No.: 7832

17. (a) What are charge transfer spectra, and how do they differ from d-d transitions?

Or

- (b) Discuss the magnetic properties of Lanthanides.
- 18. (a) Explain the concept of inert and labile complexes with examples.

Or

- (b) Discuss the macrocyclic effect and provide an example of a macrocyclic ligand.
- 19. (a) Discuss the factors that influence the rate of acid hydrolysis of octahedral complexes.

Or

- (b) What is the role of activation energy in determining the rate of ligand substitution in coordination complexes?
- 20. (a) Differentiate between inner sphere and outer sphere electron transfer reactions.

Or

(b) Describe the mechanism of photo-substitution reactions in Co(III) complexes.

Page 6 Code No.: 7832

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

21. (a) Describe the spitting of d-orbitals in tetrahedral coordination complexes and compare it with octahedral splitting.

Or

- (b) What are the consequences of Jahn-Teller distortions in coordination complexes?
- 22. (a) Discuss the role of Racah parameters in understanding the electronic structure and magnetic properties of transition metal complexes.

Or

- (b) Explain the magnetic properties of complexes with A, E and T terms.
- 23. (a) What factors contribute to kinetic lability of a complex? Explain.

Or

- (b) (i) What are stepwise formation constants, and how are they related to overall formation.
 - (ii) Describe the concept of chelate effect and its impact on complex stability.

Page 7 Code No.: 7832

24. (a) Discuss the factors that influence whether a substitution reaction in a octahedral complex follows S_N1 or S_N2 mechanism.

Or

- (b) Explain the theories of trans effect and their applications.
- 25. (a) What are complementary and noncomplementary electron transfer reactions? Explain with examples.

Or

(b) How does photochemcial conversion of N₂ to NH₃ occur?

Page 8 Code No.: 7832