Reg. No.	:	
----------	---	--

Code No.: 5673

Sub. Code: ZMAM 23

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2022

Second Semester

Mathematics - Core

ADVANCED CALCULUS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Let f and g be continuous and bounded on D, then If $F(p) \ge 0$ for all $p \in D$, $\iint_D f$ ______0.
 - (a) =

(b) >

(c) ≥

(d) ≤

(b) Prove that let R be a cube in (x, y, z) space with faces parallel to the coordinate planes. Let ω be a 2-form $\omega = A \, dy dz + B \, dz dx + C \, dx dy$.

Page 10 Code No. : 5673

- 2. If f is continuous on R, then $\lim_{d(N)\downarrow 0} |\overline{S}(N) - \underline{S}(N)| = 0.$

- 3. The linear function L such that L(1,0,0), (0,1,0), (0,0,1) is -
 - (a) [2, 1, 3]
- (b) [-2, 1, 3]
- (c) [2, -1, -3]
- (d) [2, -1, 3]
- 4. The differentials of the following transformations at the indicated points

$$\begin{cases} u = x + 6y \\ v = 3xy & \text{at (1, 1) is} \\ w = x^2 - 3y^2 \end{cases}$$

Code No.: 5673 Page 2

- Find the product the matrices $\sin y \left[\cos y - x \sin y \right]$ $-x^{-1}\sin y \quad x^{-1}\cos y$ $\sin y \quad x\cos y$

- (d) -I
- Find the det of $\begin{bmatrix} 8 & 2 \\ 12 & 3 \end{bmatrix}$ is

- If $T:\begin{cases} x = u+v \\ y = v-u^2 \end{cases}$ then the Jacobian is
 - (a) 1-2u
- (b) 1 + 2u
- (c) 1+2v
- (d) 1-2v
- 8. If E is a closed bounded subset of Ω of zero volume, then T(E) has ——— volume.

Page 3 Code No.: 5673

- If f is a scalar function of class C", then curl(grad(f)) =
 - (a) 0

- 10. If ω is any differential form of class C", then $dd\omega = -$

(b) 1

(c)

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Let f and f_1 be defined and continuous for $x \in [a, b], y \in [c, d]$ and F defined by $f(x) = \int f(x, y) dy$. Then, prove that F'(x)exists on the interval [a,b] and is given by $F'(x) = \int_{0}^{d} \frac{\partial f}{\partial x} dy = \int_{0}^{d} f_{1}(x, y) dy.$

Or

Page 4 Code No.: 5673

- If f is continuous on R, then prove that $\lim_{d(N)\downarrow 0} |\overline{S}(N) - \underline{S}(N)| = 0.$
- Let the transformation S be continuous on a 12. (a) set A and T be continuous on a set B, and let $p_0 \in A$ and $S(p_0) = q_0 \in B$. Then, prove that the product transformation TS, defined by TS(p) = T(S(p)), is continuous at p_0 .

- (b) Compute rank matrix
- Compute the Jacobians transformation

Or

Page 5 Code No.: 5673

- (b) Prove that, if T is continuous and 1-to-1 on a compact set D, then T has a unique inverse T^{-1} which maps $T(D) = D^*$ 1-to-1 onto D, and T^{-1} is continuous on D^* , for, the graph of T^{-1} is just the reflection of the graph of T and is also compact, so that the transformation T^{-1} must also be continuous.
- 14. (a) If E is a closed bounded subset of Ω of zero volume, then prove that T(E) has zero volume.

Or

- (b) If γ_1 and γ_2 are smoothly equivalent curves, then prove that $L(\gamma_1) = L(\gamma_2)$.
- 15. (a) If ω is any differential form of class C", then prove that $dd\omega = 0$.

Or

(b) Prove that let T be a transformation of class C" defined by $x = \phi(u, v), y = \psi(u, v),$ mapping a compact set D onto D^* . we assume that D and D^* are finite unions of standard region and that T is 1-to-1 on the boundary of D and maps it onto the boundary of D^* . let f be continuous in D^* . then $\iint_{D^*} f(x,y) \, dx \, dy = \iint_D f(\phi(u,v),\psi(u,v)) \, \frac{\partial(x,y)}{\partial(u,v)} \, du \, dv.$

Page 6 Code No. : 5673

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let ϕ' exist and be continuous on the interval $[\alpha, \beta]$ with $\phi(\alpha) = 0$ and $\phi(\beta) = b$. Let f be continuous at all points $\phi(u)$ for $\alpha \le u \le \beta$. Then, prove that $\int_a^b f(x) dx = \int_a^\beta f(\phi(u))\phi'(u) du$.

Or

- (b) Prove that let R be a closed rectangle, and let f be bounded in R and continuous at all points of R except those in a set E of zero area. Then ∫∫_p f exists.
- 17. (a) Prove that let T be differentiable on an open set D, and let S be differentiable on D, and if $p \in D$ and q = T(p), then prove that $d(ST)|_p = dS|_q dT|_p$.

Or

Page 7 Code No. : 5673

- (b) Prove that let T be continuous on a set D. then, any compact set $C \subset D$ is carried by T into a compact set T(C), and any connected set $S \subset D$ is carried into a connected set T(S).
- 18. (a) Prove that let T be of class C' in an open set D, with $J(p) \neq 0$ for all $p \in D$. Suppose also that T is globally 1-to-1 in D, so that there is an inverse transformation T^{-1} defined on the set $T(D) = D^*$. Then, T^{-1} is of class C' on D^* , $d(T^{-1})|_q = (dT|_p)^{-1}$, where q = T(p).

Or

- (b) If u, v and w are C' functions of x, y, and z in D, and if $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 0$ at all points of D, then u, v and w are functionally related in D. Find this relationship.
- 19. (a) Let T be a transformation from R^2 into R^2 which is of class C in an open region D. furthermore, let T be conformal and have a strictly positive Jacobian throughout D. Then, prove that at each point of D, the differential of T has a matrix representation of the form $\begin{bmatrix} A & B \\ -B & A \end{bmatrix}$.

Page 8 Code No. : 5673

- (b) Let B be the closed ball in n space, center 0, radius r, let T be a C' transformation defined on an open set containing B on which its Jacobian J(p) never vanishes Suppose also that T is closed to the identify map, meaning that there is a number ρ such that $0 < \rho < \frac{1}{2}$ and $|T(p) p| \le pr$ for all $\rho \in \beta$. Then, prove that T maps B onto a set T(B) that contains all the points in the open ball centered at 0 of radius $(1-2\rho)r$.
- 20. (a) Prove that let D be a closed convex region in the plane, and let $\omega = A(x,y)dx + B(x,y)dy$ with A and B of class C' and D. then, $\int_{\partial D} A \, dx + B \, dy = \iint_{D} d\omega = \iint_{D} \left(\frac{\partial B}{\partial x} \frac{\partial A}{\partial y} \right) dx dy.$

Or

Page 9 Code No. : 5673