(7 pages)		Reg. No.:	3.	The gcd of $3+4i$ and $4+3i$ in $J[i]$ is					
Code No.: 5369 Sub. Code: ZMAM 21			(a)	2-i	(b)	1			
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2023 Second Semester Mathematics – Core ALGEBRA – II			4.	(c) The num (a) (c)	1+2i number of un bers is 0	(d) its in (b) (d)	none of the above the ring of complex		
(For those who joined in July 2021 onwards) Time: Three hours Maximum: 75 marks $PARTA - (10 \times 1 = 10 \text{ marks})$			5.	 Which of the following is the unique factori domain? (a) Z[i] (b) Z(√-5) 					
1.	Answer R Choose the correct at R is a common	ALL questions. a	6.	(c)	(a) and (b)	(d) polynor	none of the above mial $3x^6 + 9x - 12$ is		
	(a) Right ideal(c) Two-sided idea		7.	(a) (c) Let	0 3 F[[x]] be the rin	(b) (d)	none of the above		
2.	The number of id numbers is (a) 2 (c) 0	(b) 1 (d) none of the above			$\frac{1}{2} \frac{1}{2} \frac{1}$				
					P	age 2	Code No. : 5369		

8.	Let R	be a	commutative	regular	ring.	Then	the
	J-rac	dical o	faring R is				

(a) {0}

(b) {1}

(c) I

(d) none of the above

(a) ideals

(b) integral domain

(c) prime ideals

(d) none of the above

10. If $R^{\neq} \{0\}$ then the annihilator of the set of zero divisors of R is ————

(a) R

(b) {0}

(c) R^

(d) none of the above

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If {0} and R are the only two ideals of the commutative ring R with unit element, then prove that R is a field.

Or

(b) If U is an ideal of the ring R, then prove that R/U is a ring and is a homomorphic image of R.

Page 3 Code No.: 5369

12. (a) Let R be a Euclidean ring and $a,b \in R$, If $b \neq 0$ is not a unit in R, then prove that d(a) < d(ab).

Or

(b) Let p be a prime integer and suppose that for some integer c which is relatively prime to p we can find integers x and y such that $x^2 + y^2 = cp$. Then prove that there exists integers a and b such that $p = a^2 + b^2$.

13. (a) State and prove the division algorithm.

Or

- (b) Define primitive polynomial and prove that product of two primitive polynomials is a primitive polynomial.
- 14. (a) Let I be an ideal of R. Then prove that $I \subseteq rad R$ if and only if each element of the coset 1+I has an inverse in R.

Or

(b) For any ring R, prove that the quotient ring R/RadR is without prime radical.

Page 4 Code No.: 5369

[P.T.O.]

15. (a) An element $a \in R$ is quasi-regular if and only if $a \in I_a$, prove.

Or

(b) Prove that if R is a ring R, R/radR is isomorphic to a subdirect sum of fields.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that every integral domain can be imbedded in a field.

Or

Let R and R' be rings and $\phi: R \to R'$ is a homomorphism of R onto R' with kernel U. Then prove that R' is isomorphic to R/U. Also prove that there is a one-to-one correspondence between the set of ideals of R' and the set of ideals of R which contain U and this correspondence can be achieved by associated with an ideal W' in R' the R defined by ideal W in $W = \{x \in R \mid \phi(x) \in W'\}$. With W so defined, R/W is isomorphic to R'/W'. Prove.

Page 5 Code No. : 5369

17. (a) Define Euclidean ring and prove that J[i] is an Euclidean ring.

Or

- (b) The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element of R.
- 18. (a) State and prove the Eisenstein criterion.

Or

- (b) If R is a unique factorization domain and if p(x) is a primitive polynomial in R[x], then prove that it can be factored in a unique way as the product of irreducible elements in R[x].
- 19. (a) Let I be an ideal of the ring R. Further, assume that the subset $S \subseteq R$ is closed under multiplication and disjoint from I. Then prove that there exists an ideal P which is maximal in the set of ideals which contain I and do not meet S; any such ideal is necessarily prime.

Or

- (b) If I is an ideal of the ring R, then prove:
 - (i) $rad(R/I) \supseteq \frac{radR+I}{I}$ and
 - (ii) Whenever $I \subseteq radR$, rad(R/I) = (radR)/I

Page 6 Code No.: 5369

20. (a) Let $I_1, I_2, ... I_n$ be a finite set of ideals of the ring R. If $I_i + I_j = R$ whenever $i \neq j$, then prove that $R / \cap I_i \cong \Sigma \oplus \left(\frac{R}{I_i}\right)$.

Or

- If R is a ring for which $R^{\nu} \neq \{0\}$, then
 - $ann R^{v}$ is a maximal ideal of R
 - ann Ro consists of all zero divisors of R, plus zero
 - (iii) Whenever R is without prime radical, R forms a field