(7 pages)

Reg. No. :

Code No.: 41384 E

Sub. Code: SMMA 41

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Fourth Semester

Mathematics - Main

ABSTRACT ALGEBRA - I

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. Order of a non-zero element in (Z,+) is
 - (a) α

(b) (

(c) 1

- (d) 2
- A group of order 12 cannot have a subgroup of order
 - (a) 3

(b) 4

(c) 5

(d) 6

- If H and K are two finite subgroups of a group G the [HK] =
 - (a) $\frac{|K|}{|H \cap K|}$
- (b) $\frac{|H||K|}{|H \cap K|}$
- (c) $\frac{|H|}{|H \cap K|}$
- (d) $\frac{|H| + |K|}{|H \cap K|}$
- 4. Let p be a prime number and a be any integer relatively prime to p. Then $a^{p-1} \equiv 1 \pmod{p}$
 - (a) Lagrange's theorem
 - (b) Fermat's theorem
 - (c) Euler's theorem
 - (d) Cauchy's theorem
- 5. The Kennel of a homomorphism $f: G \to G'$ is
 - (a) a subgroup of G'
 - (b) a normal subgroup of G'
 - (c) a normal subgroup of G
 - (d) {e}

Page 2 Code No.: 41384 E

- 6. $f:(R^*,\cdot)\to(R^+,\cdot)$ defined by f(x)=|x| is
 - (a) one-one
- (b) homomorphism

(c) onto

- (d) (b) and (c)
- 7. The map $f: Z \to z$ defined by $f(x) = x^2 + 3$ is
 - (a) -a ring homomorphism
 - (b) not a ring homomorphism
 - (c) a ring-isomorphism
 - (d) a ring ephimorphism
- An example of an infinite commutative ring without identity is ———.
 - (a) $(Z, +, \cdot)$
- (b) (Z_n, \oplus, \otimes)
- (c) $(2Z, +, \cdot)$
- (d) $M_2(R)$
- - (a) $3x^3 + 2x^2 + 4x + 4$
 - (b) $8x^2 + 2x^2 + 4x + 4$
 - (c) $8x^3 + 22x^2 + 14x + 4$
 - (d) $3x^3 + 2x^2 + 3x + 4$

Page 3 Code No.: 41384 E

- 10. Let f(x), $g(x) \in Z_4[x]$ be defined as $f(x) = x^2 + 2x + 3$ and $g(x) = 3x^2 + 2x$ then degree of $[f(x) + g(x)] = \frac{1}{2}$.
 - (a) 0

(b) 2

(c) 4

(d) 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) Let G denote the set of all matrices of the form $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ where $x \in R$. Then prove that G is a group under matrix multiplication.

Or

- (b) Prove that a non-empty subset H of a group G is a subgroup of G iff a, b ∈ H ⇒ ab⁻¹ ∈ H.
- 12. (a) Let G be a group and $a,b \in G$ and then prove that
 - (i) order of $a = \text{order of } a^{-1}$
 - (ii) order of a =order of $b^{-1}ab$.

Or

(b) State and prove Fermat's theorem.

Page 4 Code No. : 41384 E [P.T.O.] (a) Prove that any permutation can be expressed as a product of disjoint cycles.

Or

- (b) I(G) is a normal subgroup of A(G) prove.
- 14. (a) Prove that the set of all real numbers of the form $a+b\sqrt{2}$ where $a,b\in Q$ under usual addition and multiplication is a ring.

Or

- (b) Prove that a finite commutative ring R without zero-divisors is a field.
- (a) Show that the homomorphic image of an internal domain need not be an integral domain.

Or

(b) Prove that R[x] is an integral domain iff R is an integral domain.

Page 5 Code No. : 41384 E

PART C - (5 × 8 = 40 marks)

Answer ALL questions choosing either (a) or (b).

16. (a) Let H and K be two subgroups of a group G. Then prove that HK is a subgroup of G iff HK = KH.

Or

- (b) If n is a prime number then prove that $Z_n [0]$ is a group under multiplication modulo n.
- (a) Prove that a subgroup of cyclic group is cyclic.

Or

- (b) State and prove Lagrange's theorem.
- 18. (a) State and prove Cayley's theorem.

Or

- (b) State and prove fundamental theorem of Homomorphism.
- (a) Prove that any finite integral domain is a field.

Or

(b) Prove the characteristic of any field is either 0 or a prime number.

Page 6 Code No.: 41384 E

Prove that any integral domain D can be embedded in a field F.

Or

Let R be a ring and I be a subgroup of (R, +). Prove that the multiplication in R/Igiven by (I+a)(I+b)=I+ab is well defined if and only if I is an ideal of R.

Code No.: 41384 E