(7 pages)	Reg. No. :	2.	The series $\sum_{n=1}^{\infty} 1/p_n$ is
Code No.: 6366	Sub. Code: ZMAM 13		(a) converges (b) diverges (c) countable (d) uncountable
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.		3.	The value $\varphi(8) =$
First Semester			(a) 1 (b) 2
Mathematics – Core			(c) 4 (d) 0
ANALYTIC NUMBER THEORY		4.	The notation for Mobius function is
(For those who joined in July 2021 onwards)			(a) $\varphi(n)$ (b) $\pi(n)$
Time : Three hours	Maximum: 75 marks		(c) $f(n)$ (d) $\mu(n)$
PART A — $(10 \times 1 = 10 \text{ marks})$		5.	The identity function $I(n) = [1/n]$ is
Answer ALL questions.			(a) not multiplicative
Choose the correct answer:			(b) multiplicative
1. If $n \mid n$, then it is called property of			(c) completely multiplicative
divisibility.			(d) not complete
(a) reflexive(b) symmetric(c) transitivity		6.	If any two functions f and g are multiplicative,
			then — multiplicative
			(a) fg (b) f/g
(d) linearity			(c) none of the above (d) both
			Page 2 Code No.: 6366

- The value of $\lim_{x\to\infty} \frac{\pi(x)\log x}{x}$ 7.
 - (a) 1

(b) 2

(c) 4

- (d) 0
- The average order of $\Lambda(n)$ is 8.
 - (a) 2

(b) 1

(c) 4

- (d) 0
- The upper bound of $\pi(n) = -$ 9.
 - (a) $\frac{1}{6} \frac{n}{\log n}$ (b) $\frac{n}{\log n}$
- - (c) $6\frac{n}{\log n}$ (d) $2\frac{n}{\log n}$
- 10. The value of $\lim_{x\to\infty} \frac{\log x}{\log \pi(x)} =$
 - (a) 0

(b) 2

(c) 4

(d) 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

(a) Prove that every integer n > 1 is either a prime number or a product of prime numbers.

Or

(b) State and prove division algorithm.

Code No.: 6366 Page 3

12. (a) Prove that $\varphi(mn) = \varphi(m)\varphi(n)(d, \varphi(d))$ where d = (m, n). Also prove that $\varphi(a) \mid \varphi(b)$ if $a \mid b$.

Or

- (b) State and prove Mobius inversion formula.
- (a) Given f with (1) = 1. Then prove that f is and only multiplicative if $f(p_1^{a_1}, p_2^{a_2}, \dots, p_r^{a_r}) = f(p_1^{a_1})f(p_2^{a_2}) \dots f(p_r^{a_r})$ for all primes p_i and all integers $a_i \ge 1$.

Or

- (b) State and prove Generalized inversion formula.
- 14. (a) If $x \ge 1$, then prove that $\sum_{n \le x} \frac{1}{n} = \log x + C + 0 \left(\frac{1}{x}\right).$ Also prove that $\sum_{n\leq x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + O(x^{\alpha}) \text{ if } \alpha \geq 0.$

Or

(b) For all x > 1show that $\sum_{n\leq x}\varphi(n)=\frac{3}{\pi^2}x^2+0(x\log x).$

> Code No.: 6366 Page 4

> > [P.T.O.]

15. (a) For all $x \ge 1$, prove that $\left| \sum_{n \ge x} \frac{\mu(n)}{n} \right| \le 1$ with equality holding only if x < 2.

Or

(b) For $x \ge 2$, show that $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + 0(x) \text{ where the sum}$ is extended over all primes $\le x$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b)

- 16. (a) (i) State and prove Euclidean algorithm.
 - (ii) If (a,b) = 1, then prove that $(a^n, b^k) = 1$ for all $n \ge 1$, $k \ge 1$.

Or

- (b) (i) Prove that $n^4 + 4$ is composite if n > 1.
 - (ii) Prove that every integer n > 1 can be represented as a product of prime factors in only one way, apart from the order of the factors.
- 17. (a) State and prove the product formula for $\varphi(n)$.

Or

(b) Define Mobius function and find the relationship between Mobius function and Euler totient function.

Page 5 Code No.: 6366

18. (a) Define Liouville's function and for every $n \ge 1$ and prove that $\sum_{d|n} \lambda(d) = \begin{cases} 1, & \text{if } n \text{ is a square} \\ 0, & \text{otherwise} \end{cases}.$

Or

- (b) State and prove Generalized Mobius inversion formula.
- 19. (a) Prove that the set of lattice points visible from the origin has density $6/\pi^2$.

Or

(b) For all $x \ge 1$ and $\alpha > 0$, $\alpha \ne 1$, prove that,

(i)
$$\sum_{n \le x} \sigma_1(n) = \frac{1}{2} \zeta(2) x^2 + 0(x \log x)$$

(ii)
$$\sum_{n \le x} \sigma_{\alpha}(n) = \frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1} + O(x^{\beta}) \text{ where}$$
$$\beta = \max\{1, \alpha\}.$$

20. (a) For $n \ge 1$, prove that the n^{th} prime p_n satisfies the inequality $\frac{1}{6} n \log n < p_n < 12 \bigg(n \log n + n \log \frac{12}{e} \bigg).$

Or

Page 6 Code No.: 6366

(b) Prove that the following relations are logically equivalent

(i)
$$\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$$

(ii)
$$\lim_{x\to\infty} \frac{g(x)}{x} = 1$$

(iii)
$$\lim_{x\to\infty} \frac{\psi(x)}{x} = 1$$

Code No.: 6366 Page 7