(7 pages)	pages) Reg. No.:		3. An isolated vertex of a graph is a vertex wit degree			
Code No.: 7754	Sub. Code: WMAE 11		(a)	1	(b)	2
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.		4.	(c) An	0 edge $e = xy$ is a	(d) cut edge	3 of a connected graph
First Semester			G if and only e belongs to			
Mathematics – Elective – I			(a)	Cycle	(b)	No cycle
GRAPH THEORY AND APPLICATIONS			(c)	Path	(d)	None of the above
(For those who joined in July 2023 onwards)		5.	The connectivity and edge connectivity of a simple cubic graph G are			
Time: Three hours	Maximum: 75 marks		(a)	Not equal	(b)	Greater than
PART A — $(15 \times 1 = 15 \text{ marks})$			(c)	Less than	(d)	Equal
Answer ALL questions. Choose the correct answer:		6.	Each block of G with at least three vertices is a connected subgraph of G .			
1. Every Cubic gravertices.	ph has number of		(a)	1	(b)	2
(a) Odd (c) Prime	(b) Even (d) 6		(c)	3	(d)	4
2. A clique of G is graph of G		7.	Eve	ry g	raph con	tains a spanning tree.
(a) Subgraph			(a)	Connected	(b)	Disconnected
	bgraph graph with odd degrees graph with even degrees		(c)	Simple	(d)	All the above
	5			I	Page 2	Code No. : 7754

8.	If $\delta(G) \ge 2$, then G contains a								
	(a)	Path	(b)	Cycle					
	(c)	Clique	(d)	Isolated vertex					
9.	If T is a tree with n vertices, then T contains number of edges.								
	(a)	n	(b)	n-1					
	(c)	n-2	(d)	n-3					
10.	A subset S of V is independent if and only if V/S is								
	(a)	Disconnected	G (b)	Covering of G					
	(c)	Clique of G	(d)	None of the above					
11.	Every has at most one perfect matching.								
	(a)	K_n	(b)	C_n					
	(c)	Tree	(d)	Simple graph					
12.		ry connected 3- es has a	-regular g	graph having no cut					
	(a)	1-factor	(b)	2-factor					
	(c)	3-factor	(d)	4-factor					
13.	The	Chromatic Nun	$_{6}$						
	(a)	1	(b)	2					
	(c)	3	(d)	4					
]	Page 3	Code No.: 7754					

- 14. Any Critical graph is _
 - Disconnected
 - Has an isolated vertex
 - Connected
 - Does not has an isolated vertex
- 15. Every k-critical graph is edge connected.

- (k-2) (d) (k-3)

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that the number of edges of a simple graph of order n having ω component cannot exceed $\frac{(n-\omega)(n-\omega+1)}{2}$

Or

(b) Prove that in a connected graph G with at least three vertices, any two longest paths have a vertex in common.

Page 4

Code No.: 7754

[P.T.O.]

17. (a) Prove that a simple cubic connected graph G has a cut vertex if and only if it has a cut edge.

Or

- (b) A connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
- 18. (a) State and Prove Jordan's Theorem.

Or

- (b) Prove that if e is not a loop of a connected graph G, then $\tau(G) = \tau(G e) + \tau(G \circ e)$.
- 19. (a) Prove that a k-regular bipartite graph is 1-factorable.

Or

- (b) Prove that every connected 3-regular graph having no cut edges has a 1- factor.
- 20. (a) State and prove Ore's Theorem.

Or

(b) Prove that in a critical graph G, no vertex cut is a clique.

Page 5 Code No.: 7754

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

21. (a) Explain different Graph operations with an example.

Or

- (b) Prove that if the simple graphs G_1 and G_2 are isomorphic, then $L(G_1)$ and $L(G_2)$ are isomorphic.
- 22. (a) State and Prove Whitney's theorem.

Or

- (b) State and Prove Ear decomposition of a block.
- 23. (a) Prove that the number of edges in a tree on n vertices is n-1. Conversely a connected graph on n vertices and n-1 edges is a tree.

Or

(b) Prove that $\tau(K_n) = n^{n-2}$, where K_n is a complete graph on n vertices, $n \ge 2$.

Page 6 Code No.: 7754

24. (a) Prove that a bipartite graph G with bipartition (X,Y) and G has a matching that saturates all the vertices of X if and only if $|N(S)| \ge |S|$ for every subset S of X.

Or

- (b) Prove that agraph G has a 1-factor if for all $O(G-S) \le |S|$ and only if if $S \subseteq V$.
- Prove that if a connected graph G is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta(G)$.

Or

(b) Prove that if for a simple 2-connected graph $G, \alpha \leq k$, then G is Hamiltonian.