(6 pages)

Reg. No.:....

Code No.: 41317 E Sub. Code: SMPH 31

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2018.

Third Semester

Physics - Main

ELECTRICITY

(For those who joined in July 2007 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The potential at a point due to point charge is $V = \frac{1}{V}$.
 - (a) $\frac{1}{4\pi \, \varepsilon_0} \cdot \frac{q}{r^2}$
- (b) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$
- (c) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{q^2}{r}$
- (d) none

- 2. The electric potential energy W = ----
 - (a) qV
- (b) q^2V
- (c) q/V
- (d) V/q
- According to Peltier effect, the heat (H) evolved or absorbed is — to the charge passing through the junction.
 - (a) directly proportional
 - (b) inversely proportional
 - (c) independent
 - (d) none
- 4. The unit for Thomson coefficient (σ) is
 - (a) VC
- (b) VC^{-1}
- (c) VC2
- (d) none
- 5. The ionic dissociation if potassium chloride is given by $KCl \rightarrow ----$.
 - (a) $K^{+} + Cl^{-}$
- (b) $K^- + Cl^+$
- (c) 2K+ Cl-
- (d) none

Page 2 Code No.: 41317 E

- 6. In secondary cells chemical reactions are
 - (a) reversible
 - (b) irreversible
 - (c) partly reversible
 - (d) none
- 7. The resonant frequency for a LCR circuit is $f = \frac{1}{2}$
 - (a) $\frac{1}{2\pi\sqrt{LC}}$
- (b) $\frac{1}{\pi\sqrt{LC}}$
- (c) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{L}{C}$
- (d) none
- 8. If two resistance 50 ohm and 150 ohm are connected in series, the net resistance =
 - (a) 100 ohm
- (b) 37.5 ohm
- (c) 200 ohm
- (d) none
- 9. The value of the operator *j* is
 - (a) -1

(b) $\sqrt{-1}$

- (c) $\sqrt{1}$
- (d) none
- - (a) leads, 180°
- (b) leads, 90°
- (c) lags behind, 90° (d) none

Page 3 Code No.: 41317 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Obtain Coulomb's law from Gauss law.

Or

- (b) State and explain Coulombs law in electrostatics.
- 12. (a) State and explain Seebeck effect.

Or

- (b) What is Peltier effect? Define Peltier coefficient.
- 3. (a) Give the evidences for Arrhenius theory of electrolytic dissociation.

Or

- (b) Explain the working of Nickel-Iron accumulator.
- 14. (a) Derive expression for the growth of current in a circuit have L and R.

Or

(b) Derive expression for the decay of current in a circuit having *L* and *R*.

Page 4 Code No.: 41317 E

[P.T.O.]

15. (a) Explain the sharpness of resonance in parallel resonance circuit.

Or

(b) Compare series resonance and parallel resonance circuit.

PART C - $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Using Gauss law, find the electric field intensity due to a line of charge.

Or

- (b) What is an electric dipole? Derive the expression for electric potential energy.
- 17. (a) Describe the method of measuring thermo emf using potential energy.

Or

- (b) What is thermoelectric diagram? Explain any one of the application of thermoelectric.
- 18. (a) Explain the determination of specific conductivity of electrolytes using Kohlrausch.

Or

(b) Derive Gibbs-Helmholtz equation for a reversible cell.

Page 5 Code No.: 41317 E

19. (a) Explain the conversion of galvanometer into ammeter and voltmeter.

Or

- (b) Describe the method of measuring a high resistance by leakage method.
- 20. (a) Give the applications of *j*-operator in studying in A.C. circuits.

Or

(b) Derive the expression for the variation of current in a LCR circuit connected in series.

Page 6 Code No. : 41317 E