(7 pages)

Reg. No. :

Code No. : 33009 E Sub. Code : AACS 11/ AASE 11

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

First Semester

Computer Science / Software Engineering – Allied

DISCRETE MATHEMATICS

(For those who joined in July 2020 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

—.

1. The relation ' \leq ' on the set R of real number is

(a) reflexive (b) symmetric

(c) equivalence (d) none of these

2.	A relation R on a set whenever aRb and bRc	t A is if then aRc	
	(a) reflexive	(b) antisymmetric	
	(c) symmetric	(d) transitive	
3.	The absolute value of (-3.33) is		
	(a) 3.33	(b) -3	
	(c) 3	(d) 0.33	
4.	Logarithms to base 2 logarithms.	arithms to base 2 is called ————— rithms.	
	(a) base	(b) common	
	(c) natural	(d) binary	
5.	Which of the following is not a proposition?		
	(a) Paris is in France		
	(b) London in Denmark		
	(c) $1+1=2$		
	(d) Where are you going	;?	
6.	A proposition is said to be if it cannot be broken down into simplex propositions.		
	(a) primitive	(b) compound	
	(c) composite	(d) connected	

Page 2 Code No. : 33009 E

- 7. The number of elements in the $m \times n$ matrix is
 - (a) mn (b) $m \times n$
 - (c) 2m (d) m^2
- 8. If A is an $m \times p$ matrix and B is a $p \times m$ matrix then order of AB is
 - (a) $m \times p$ (b) $m \times m$
 - (c) $p \times p$ (d) none
- - (a) pendent (b) isolated
 - (c) loop (d) none
- 10. A cycle-free graph is known as _____
 - (a) connected (b) circuit
 - (c) path (d) tree
 - PART B $(5 \times 5 = 25 \text{ marks})$
 - Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.
- 11. (a) Prove that if A, B, C sets then $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Or

Page 3 Code No. : 33009 E

- (b) If $A = \{2,3,5\}$, $B = \{6,8,10\}$, $C = \{2,3\}$, and $D = \{8,10\}$ are four non empty sets $R = \{(2,6), (2,8), (3,10)\}$ and the relation *S* from C to D $S = \{(2,8), (3,10)\}$ find $R \cup S, R \cap S, R - S$ and R^1 .
- 12. (a) Let $x = \{1,2,3,4\}$. Determine whether or not each relation below a function from x into X.
 - (i) $f = \{(2,3), (1,4), (2,1)(3,2), (4,4)\}$

(ii)
$$g = \{(3,1), (4,2), (1,1)\}$$

(iii) $h = \{(2,1), (3,4), (1,4), (2,1), (4,4)\}.$

Or

- (b) Prove that f: A → B is a one-one and onto function then
 - (i) f^{-1} of $= I_A$
 - (ii) $f \circ f^{-1} = I_B$ where I_A and I_B are the identify function of the set A and B.

Page 4 Code No. : 33009 E [P.T.O.]

- 13. (a) Let p denotes 'It rains' q denotes 'The atmospheric humidity increases'. Write the following statements in symbolic form.
 - (i) Atmospheric humidity increases only if it rains.
 - (ii) Sufficient condition for it to rain is that atmospheric humidity increases
 - (iii) Necessary condition for it to rain is that atmospheric humidity increases.
 - (iv) Whenever atmospheric humidity increases it rains.

Or

(b) Test the validy of the statement.

(i)
$$\frac{p \lor q}{\therefore p \land \sim q}$$
$$\frac{q \lor (p \lor r)}{(ii)} \frac{\sim r}{\therefore p \lor q}.$$

14. (a) Write the properties of matrix operation.

(b) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
 find $A^3, 2A^2 - 3A + 5$.

Page 5 Code No. : 33009 E

15. (a) Define isomorphism of Graph give an example:

Or

(b) Prove that there is unique path between each pair of vertices in a tree T(V, E).

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Explain the types of relations and give an example.

Or

- (b) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \circ S, S \circ R, R \circ (S \circ R), (R \circ S) \circ R, R \circ R, S \circ S$ and $R \circ R \circ R$.
- 17. (a) If S and T are non-empty sets then prove that there exists a one-to-one correspondence between $(S \times T)$ and $(T \times S)$.

\mathbf{Or}

(b) Prove that $f^{-1} \circ g^{-1} = (g \circ f)^{-1}$ where $f: Q \to Q$ such that f(x) = 2x and $g(x): Q \to Q$ such that g(x) = x + 2 are two functions.

Page 6 Code No. : 33009 E

18. (a) Test the validity of the following arguments "If my brother passes the examination of the institute of Chartered Accountants in the first attempt. I will give him a valuable prize. Either he passes the examination or I was out of station. I did not give my brother a prize this time although he passed the examination. Therefore I was out of station.

Or

- (b) Construct the truth table for the following and write the truth set $P \Rightarrow [(p \lor r) \land \sim (p \Rightarrow \sim r)].$
- 19. (a) Solve x + 2y + 3z = 14, 3x + y + 2z = 11, 2x + 3y + z = 11.

Or
(b) Find the inverse of
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$
.

20. (a) Explain the types of graphs in detail.

Or

(b) Prove that the number of pendant vertices in a tree is equal to $p = \frac{(n+1)}{2}$ where *n* is the number of vertices in a binary tree.

Page 7 Code No. : 33009 E