(6 pages)

Reg. No.:

Code No.: 7863

Sub. Code: PPHM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Third Semester

Physics - Core

QUANTUM MECHANICS - I

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- According to schrodinger, a particle is equivalent to a
 - single wave (a)
- light wave
- wave packet (c)
- energy

- An equation representing Ehrenfest relation is
 - (a) $\frac{d}{dx}\langle \vec{p} \rangle = -\langle \nabla v \rangle$ (b) $\frac{d}{dt}\langle \vec{p} \rangle = -\langle \nabla v \rangle$
 - (c) $\frac{d}{dt}\langle \vec{p} \rangle = -i\hbar \langle \nabla v \rangle$ (d) $\frac{d}{dt}\langle \vec{p} \rangle = i\hbar \langle \nabla v \rangle$
- The duration of radar pulse is 10-6S, the 3. uncertainty in energy would be
 - $6.62 \times 10^{-19} J$
- $10^{-35}J$
- $10^{-28}J$
- Hermitian operator is one which has
 - real eigen values only
 - imaginary eigen values only
 - real and imaginary eigen values
 - no eigen values
- The ground state energy of linear harmonic 5. oscillator is

Page 2

Code No.: 7863

6. The eigen functions for a particle in a box is

(a)
$$\psi_n(x) = \sqrt{\left(\frac{2}{L}\right)} \sin\left(\frac{n\pi x}{L}\right)$$

(b)
$$\psi_n * (x) = \sqrt{\left(\frac{2}{\pi}\right)} \sin\left(\frac{n\theta x}{L}\right)$$

(c)
$$\psi_n(x) = \sqrt{\left(\frac{2}{L}\right)} \cos\left(\frac{n\pi x}{L}\right)$$

(d)
$$\psi^*(x) = \sqrt{\left(\frac{2}{\pi}\right)} \cos\left(\frac{n\theta x}{L}\right)$$

The scalar product of the vector ϕ and ψ is

(a)
$$\langle \phi | \psi \rangle = \langle \phi | \psi \rangle^*$$
 (b) $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$

(b)
$$\langle \phi | \psi \rangle = \langle \psi | \phi \rangle$$

(c)
$$\langle \phi | \psi \rangle^{\bullet} = \langle \phi | \psi^{\bullet} \rangle$$

$$\langle \phi \mid \psi \rangle^* = \langle \phi \mid \psi^* \rangle$$
 (d) $\langle \phi \mid \psi \rangle^* = \langle \phi \mid \phi^* \rangle$

- is also known as canonical matrix 8. transformation.
 - Matrix transformation (a)
 - Unitary transformation
 - Linear transformation (c)
 - (d) None of the above

Code No.: 7863 Page 3

- 9. picture both state vector and the operators are time-dependent.
 - Schrodinger
- Heisenberg
- Interaction
- Both (a) and (b)
- In the Heisenberg picture opertator does not change with time.
 - Hamiltonian
- (b) Linear
- Projection
- Identity

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

Describe the conditions on allowed wave 11. (a) functions.

Or

- Discuss conservation of probability.
- on classical uncertainty Write 12. (a) principle.

Or

Discuss about Hermittan Operator.

Page 4

Code No.: 7863

[P.T.O.]

 (a) Derive the eigen values and eigen functions of particle in box.

Or

- (b) Describe the Poschl Teller Potentials.
- 14. (a) Deduce the matrix representation of wave functions.

Or

- (b) Describe the properties of bra and ket vectors.
- 15. (a) Discuss about Heisenberg picture.

Or

(b) Deduce the time evaluation of density operator.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

Each answer should not exceed 600 words.

 (a) Explain in detail about a particle in one dimensional, infinitely deep potential well.

Or

(b) Derive the solution of time dependent Schrodinger equation.

Page 5 Code No.: 7863

17. (a) Explain in detail about Heisenberg uncertainty relation.

Or

- (b) Explain in detail about Heisenberg gamma ray microscope.
- (a) Derive the Schrodinger equation for quantum pendulum.

Or

- (b) Discuss about rigid rotator with free axis.
- (a) Derive an expression for represent the matrix form of Interaction Picture.

Or

- (b) Explain in detail about dirac notation.
- 20. (a) Deduce the expression for Ischrodinger Picture.

Or

(b) Describe in detail about Interaction Picture with Schrodinger equation of motion.

Page 6 Code No.: 7863