Reg. No. :.....

Code No. : 20580 E Sub. Code : SMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester

Mathematics — Core

GRAPH THEORY

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. In any group of more than one people, the number of people having the same number of friends inside the group is
 - 3 2 (a) 9 (b) (c) 4 (d) $\mathbf{5}$
- 2. For a graph with 6 points, the independence number is 2. Then the covering number is
 - (a) 4 (b) $\mathbf{2}$ (c) 6 (d) 3

(7 pages)

3.	Girth of C_8 is		
	(a) 2	(b)	4
	(c) 6	(d)	8
4.	If G is a connecte	ed gr	raph then $w(G) =$
	(a) 0	(b)	2
	(c) 1	(d)	number of edges
5.	Number of edges of a tree of order 10 is		
	(a) 10	(b)	11
	(c) 9	(d)	5
6.	Which theorem is stronger than Dirac's theorem?		
	(a) Cayley theorem		
	(b) Euler's theorem		
	(c) Hamilton's theorem		
	(d) Chvatal's theorem	ı	
7.	In any connected plane (p, q) graph with r faces, the minimum number of edges is		
	(a) $\frac{3r}{2}$	(b)	$\frac{2r}{3}$

(c) 3p+6 (d) p-1

Page 2 Code No. : 20580 E

- 8. The chromatic number of a tree T with atleast 2 points is
 - (a) 1 (b) 2
 - (c) 0 (d) 3
- 9. If G is a (p, q) graph and $f(G, \lambda) = \lambda^r + s\lambda^{r-1} + \dots$ then r, s are respectively
 - (a) p, q (b) q, p
 - (c) q, -p (d) p, -q
- 10. In a digraph,
 - (a) $\Sigma d^+(v) = \Sigma d^-(v) = q$ (b) $\Sigma d^+(v) = 2q$
 - (c) $\Sigma d^{-}(v) = 2q$ (d) None of these

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove that isomorphism preserves the degree of vertices.

Or

(b) Prove that every graph is an intersection graph.

Page 3 Code No. : 20580 E

12. (a) Show that the partition P = (6, 6, 5, 4, 3, 3, 1) is not graphical.

 \mathbf{Or}

- (b) Show that any u-v walk contains a u-v path.
- 13. (a) If G is a graph in which the degree of every vertex is atleast two then show that G contains a cycle.

Or

- (b) Prove that in a tree, between any two points there is a unique path.
- 14. (a) Prove that every polyhedron has atleast two faces with the same number of edges on the boundary.

Or

- (b) State and prove Euler's polyhedron formula.
- 15. (a) Define :
 - (i) Directed walk
 - (ii) Degree pair
 - (iii) Digraph.

.Or

(b) Show that $\lambda^4 - 3\lambda^3 + 3\lambda^2$ cannot be the chromatic polynomial of any graph.

Page 4 Code No. : 20580 E

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If G_1 is a (p_1, q_1) and G_2 is a (p_2, q_2) graph then prove that $G_1 + G_2$ is a $(p_1 + p_2, q_1 + q_2 + p_1 p_2)$ graph and $G_1 \times G_2$ is a $(p_1 \cdot p_2, q_1 p_2 + q_2 p_1)$

Or

(b) Prove that the maximum number of lines among all *p*-point graphs with no triangles is $\left[\frac{p^2}{4}\right]$.

 $\left\lfloor \frac{p}{4} \right\rfloor$.

17. (a) Prove that a partition $P = (d_1, d_2, ..., d_p)$ of even number into p parts with $p-1 \ge d_1 \ge d_2 \ge \ge d_p$ is graphical iff the modified partition $P^1 = \left(d_2 - 1, d_3 - 1, ..., \frac{d-1}{d_1 + 1}, ..., d_p\right)$ is

graphical.

Or

(b) Prove that a graph G with atleast two points is bipartite iff all its cycles are of even length.

Page 5 Code No. : 20580 E

18. (a) Show that the Petersen graph is non-hamiltonian.

Or

- (b) Prove that the following statements are equivalent for a connected graph G.
 - (i) G is Eulerian.
 - (ii) Every point of G has even degree.
 - (iii) The set of edges of G can be partitioned into cycles.
- 19. (a) (i) Prove that the graphs K_5 and $K_{3,3}$ are not planar.
 - (ii) If G is a plane connected (p, q) graph without triangles and $p \ge 3$ then prove that $q \le 2p-4$.

Or

(b) Prove that
$$\chi'(K_n) = \begin{cases} n & \text{if } n \text{ is odd } (n \neq 1) \\ n-1 & \text{if } n \text{ is even} \end{cases}$$
.

Page 6 Code No. : 20580 E

20. (a) Prove that the coefficients of $f(G, \lambda)$ are alternate in sign. Also prove that if G is a (p, q) graph then the coefficient of λ^{p-1} is -q.

Or

(b) Prove that a weak diagraph D is Eulerian iff every point of D has equal in-degree and out-degree.

Page 7 Code No. : 20580 E