Reg. No.:....

Code No.: 7771 Sub. C

Sub. Code: WMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

Third Semester

Mathematics - Core

TOPOLOGY

(For those who joined in July 2023 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Which one of the following is a topology on $X = \{a, b, c, d\}$
 - (a) $\{\phi, X, \{a,b\}, \{b,c\}, \{a,b,c\}\}\$
 - (b) $\{\phi, X, \{a\}, \{b\}, \{ab\}, \{a,c\}\}$
 - (c) $\{\phi, X, \{a, b, c\}, \{b, c, a\}\}$
 - (d) $\{\phi, X, \{a\}, \{a,b\}, \{a,b,c\}\}$

- 2. I. In Y = [0, 1], its subspace topology and its order topology are the same
 - II. In $Y = [0,1) \cup \{2\}$, its subspace topology and its order topology are the same
 - (a) Both I and II are true
 - (b) I is true but II is not true
 - (c) I is not true but II is true
 - (d) Neither I nor II is true
- 3. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}, \{b, c\}, \{cb\}\}$. Let $x_n = b$ for all n. The sequence $\{x_n\}$ converges to
 - (a) b only
- (b) c only
- (c) a only
- (d) a, b and c
- 4. Let $f:A\to B$. Let $A_0\subset A$ and $B_0\subset B$, then the false statement is
 - (a) $A_0 \subset f^{-1}(f(A_0))$
 - (b) $f(F^{-1}(B_0)) \subset B_0$
 - (c) $B_0 \subset B_1 \Rightarrow f^{-1}(B_0) \subset f^{-1}(B_1)$
 - (d) $f(A_0 \cap A_1) = f(A_0) \cap f(A_1)$

Page 2 Code No.: 7771

- 5. Which one of the following is not true for box and product topologies?
 - (a) the box topology is finer than the product topology
 - (b) for finite products, two topologies are precisely the same
 - (c) the product topology is finer than the box topology
 - (d) for infinite products, two topologies are different
- 6. The interval (2, 6) is
 - (a) B(2,4)
- (b) B(3,2)
- (c) $B(2-\varepsilon, 6-\varepsilon)$
- (d) B(4,2)
- 7. The only connected subspace of Q are
 - (a) the subsets of Q
 - (b) the one-point sets
 - (c) ϕ and R
 - (d) the open intervals in R
- 8. Consider
 - I R is connected.
 - II R^{ω} is connected in the box topology
 - (a) Both I and II are true
 - (b) I is true but II is not true
 - (c) II is true but I is not true
 - (d) Neither I nor II is time

Page 3 Coc

Code No.: 7771

- 9. The set (0, 5) in R is
 - (a) both connected and locally connected
 - (b) connected but not locally connected
 - (c) locally connected but not connected
 - (d) neither connected nor locally connected
- 10. Which one of the following is not compact
 - (a) Space X containing 5 points
 - (b) The subspace $X = \{0\} \cup \{1/n \in n/Z_+\}$
 - (c) R
 - (d) [0, 1]
- 11. A space X said to be limit point compact if
 - (a) X has a limit point
 - (b) every subset of X has a limit point
 - (c) every infinite subset of X has a limit point
 - (d) every finite subset of X has a limit point
- 12. Consider
 - I Q is locally compact
 - II R^{ω} is locally compact
 - (a) Both I and II are true
 - (b) I is true but II is not true
 - (c) II is true but I is not true
 - (d) Neither I nor II is true

Page 4

Code No.: 7771

[P.T.O]

- 13. Which one of the following is false
 - (a) A subspace of a topological space is a topology
 - (b) A subspace of a Hausdorff space is Hausdorff
 - (c) A subspace of a regular space is regular
 - (d) A subspace of a normal space is normal
- 14. Which one of the following is true
 - (a) R_l^2 is not normal
 - (b) R_i is not regular
 - (c) R_l^2 is not regular
 - (d) R_i is not normal
- 15. Complete regularity lies between
 - (a) Hausdorff and regularity
 - (b) Regularity and completeness
 - (c) Completeness and normality
 - (d) Regularity and normality

PART B —
$$(5 \times 4 = 20 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

16. (a) State and prove a criterion in terms of the bases for determining whether one topology is finer than another.

Or

(b) Let Y be a subspace of X; let A be a subset of Y. Express the closure of A in Y in terms of \overline{A} .

Page 5 Code No.: 7771

17. (a) Let $f: A \to XxY$ be given by the equation $f(a) = (f_1(a), f_2(a))$. Prove that f is continuous if and only if the functions $f_1: A \to x$ and $f_2: A \to Y$ are continuous.

Or

- (b) State and prove the sequence lemma.
- 18. (a) Define a connected space. Prove that the rationals Q are not connected.

Or

- (b) If X is a topological space, prove that each path component of X lies in a component of X. If X is locally path connected, prove that the components and the path components of X are the same.
- 19. (a) Prove that every closed subspace of a compact space is compact.

Or

- (b) Let X be a locally compact Hausdroff space. Let A be a subspace of X. If A is closed in X or open in X, prove that A is locally compact.
- 20. (a) Show that every compact Hausdroff space is normal.

Or

(b) Prove that a product of completely regular spaces is completely regular.

Page 6 Code No.: 7771

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

21. (a) Define any three topologies on the real line R and bring out the relation between these topologies.

Or

- (b) Define the closure and the limit points of a set bring out a relationship between the closure of a set and the limit points of a set.
- 22. (a) Let X and Y be topological spaces, let $f: X \to Y$ prove that the following are equivalent.
 - (i) f is continuous
 - (ii) for every subset A of X, one has $f(\overline{A}) \subseteq \overline{f(A)}$
 - (iii) for every closed set B of Y, the set $f^{-1}(B)$ is closed in X.

Or

(b) Prove that the function $D(x,y) = \sup \left\{ \frac{J(x_i,y_i)}{i} \right\} \text{ is a metric and that}$ induces the product topology on R^w .

Page 7 Code No.: 7771

23. (a) Prove that a finite Cartesian product of connected spaces is connected.

Or

- (b) Given X, and $x, y \in X$, define $x \sim y$ is there is a connected subspace of X containing both x and y show that \sim is an equivalence relation and hence define components. What are the properties of components? Explain.
- 24. (a) State and prove the tube lemma.

Or

- (b) Let X be a metrizable space. Prove that sequentially compactness implies compactness.
- 25. (a) Prove that every regular space with a countable basis is normal.

Or

(b) State and prove the Urysohn lemma.

Page 8 Code No.: 7771