Reg.	No.	•	
TUCE.	110.	•	

Code No.: 5916 Sub. Code: PCSM 13

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

First Semester

 $Computer\ Science-Core$

MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- 1. If A and B are sets and $A \cup B = A \cap B$ then
 - (a) $A = \phi$
- (b) $B = \phi$
- (c) A=B
- (d) None of these
- 2. How many different non isomorphic Abelian groups of order 4 are there?
 - (a) 2

(b) 3

(c) 4

(d) 5

3.	A boolean function may be transformed into					
	(a)	Logical diagram	m			
	(b)	Logical Graph				
	(c)	Map				
	(d)	Matrix				
4.	E*	x = x * E = x is				
	(a)	Commutative	(b)	Inverse		
	(c)	Associative	(d)	Identity		
5.	A –	i	s an order	ed collection of objects		
	(a)	Relation	(b)	Function		
	(c)	Set	(d)	Proposition		
6.	The Cardinality of the set of odd positive integers less than 10?					
	(a)	10	(b)	5		
	(c)	3	(d)	20		
7.	The number of element in the power set $\{\{a,b\},c\}$ is					
	(a)	8	(b)	4		
	(c)	3	(d)	7		
			Page 2	Code No. : 5916		

- 8. A self complemented, distributive lattice is called(a) Boolean algebra
 - (b) Modular lattice
 - (c) Complete lattice
 - (d) Self dual lattice
- 9. If lattice (C, \leq) is a complemented chain, then
 - (a) $|C| \le 1$
- (b) $|C| \le 2$
- (c) |C| > 1
- (d) C doesn't exist
- 10. Let D_{30} = {1,2,3,5,6,10,15,30} and relation be a partial ordering on D_{30} . The lab of 10 and 15 respectively is
 - (a) 10

(b) 15

(c) 30

(d) 20

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Prove that isomorphism is an equivalence relation on diagraphs?

Or

(b) Let $f(x): x_2-3x+2$. Find $f(x_2)$ and f(x+3).

Page 3 Code No.: 5916

12. (a) Explain in brief about Euclidean algorithm.

Or

- (b) State and explain binomial theorem.
- 13. (a) If $A = \{1,2,3\}, B = \{4,5\}$ $A \times B$ and $B \times A$.

Or

- (b) Explain in brief about modular arithmetic.
- 14. (a) Explain in brief about testing the prime numbers.

Or

- (b) How many classes are there for loop-free diagraphs with 3 vertices?
- 15. (a) Find the generating function of $n \wedge 2-2$?

Or

(b) Describe about division theorem in detail.

Page 4 **Code No.: 5916** [P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

16. (a) Draw Hasse diagram for the poset $(P(S),\subseteq)$ where $S = \{1,2,3,4\}$.

 O_1

- (b) Describe an algorithm to decide whether a graph is bipartite.
- 17. (a) Solve an=an-1+n where $a_0=2$ by substitution?

Or

- (b) Let G be a group of order p, where p is a prime. Find all subgroups of G.
- 18. (a) Find truth table for $(P \leftrightarrow \sim Q) \leftrightarrow (Q \rightarrow P)$?

Or

- (b) Describe principle of inclusion with an example.
- 19. (a) Solve Recurrence relation $U_{{\scriptscriptstyle n+2}} + U_{{\scriptscriptstyle n+1}} + U_{{\scriptscriptstyle n}} \, U_{{\scriptscriptstyle 2}} = 1, \; U_{{\scriptscriptstyle 3}} = 2?$

Or

(b) Prove that the cancellation laws hold good in group G?

Page 5 Code No.: 5916

20. (a) Describe chromatic number with example.

Or

(b) Explain in brief about duality law with example.

Page 6 **Code No.: 5916**