Reg. No. :

Code No.: 6377 Sub. Code: ZMAM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Mathematics - Core

ADVANCED ALGEBRA — I

(For those who joined in July 2021 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If dim V=5 then dim Hom (V, V) + dim <math>Hom (V, F) is
 - (a) 50

(b) 25

(c) 10

(d) 30

- 2. An R-module M is said to be cyclic if there is an element $m_0 \in m$ such that every $m \in M$ is of the form
 - (a) $m = rm_o$ for some $r \in R$
 - (b) $m = m_o^n$ for some integer n
 - (c) $m = r + m_o$ for some $r \in R$
 - (d) $m = rm_o$ for some $n \in M$
- 3. If V is finite dimensional over F and if $T \in A(V)$ is singular, then there exists an $S \neq 0$ in A(V) such that
 - (a) ST=TS=1
 - (b) ST=TS=0
 - (c) vS = 0 for some $v \neq 0$ in V
 - (d) ST=TS
- 4. If $vT = \lambda v$ the vT^k is
 - (a) $(\lambda v)^k$

(b) λυ^k

(c) $\lambda^k v^k$

(d) $\lambda^k v$

Page 2 Code No.: 6377

- 5. If M, of dimension m, is cyclic w.r.t. T, then the dimension of MTk is
 - (a) $\frac{m}{k}$

(b) m+k

- (c) m-k
- (d) m^k
- 6. Which one of the following is a Jordan block
 - (a) $\begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$
- (d) $\begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}$
- 7. $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{pmatrix}$ is the companion matrix of
 - (a) $1 + 3x + 3x^2$
 - (b) $1+3x+3x^2+x^3$
 - (c) $-1-3x-3x^2-x^3$
 - (d) $-1-3x-3x^2+x^3+x^4$

Page 3 Code No.: 6377

- 8. Which one of the following is not true for all $A, B \in Fn$
 - (a) (A') = A
 - (b) (A+B)' = B' + A'
 - (c) (AB)' = A'B'
 - (d) $(\lambda A') = \lambda A'$ where $\lambda \in F$
- 9. The normal transformation N is unitary if and only if its characteristic roots are
 - (a) real
 - (b) complex number
 - (c) all of absolute value 1
 - (d) all equal to 1
- 10. The signature of the real quadratic form $x_1^2 + 2x_1x_2 + x^2$ is
 - (a) 0

(b) -1

(c) 1

(d) 2

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Define Ham(V, W). Introduce an addition and a scalar multiplication in Hom (V, W). Show that if $S, T \in Hom(V, W)$ than $S+T \in Hom(V, W)$.

Or

Page 4 Cod

Code No.: 6377

[P.T.O.]

- (b) Let V be the set of all continuous complex-valued functions on [0, 1]. If f(t), $g(t) \in V$, define $(f|t|, g|t|) = \int f(t)\overline{g|t|}dt$. Prove that this defines an inner product on V.
- 12. (a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$. Prove that for any polynomial of $q(x) \in F(x)$, $q(\lambda)$ is a characteristic root of q(T).

Or

- (b) Let V be the vector space of all polynomials over F of degree 3 or less and let D be the differentiation operator defined on V. Find the matrix of D w.r.t. the basis
 - (i) 1, x, x^2 , x^3
 - (ii) $1, 1+x, 1+x^2, 1+x^3$
- 13. (a) If $W \subset V$ is invariant under T, prove that T induces a linear transformation \overline{T} on V/W defined by $(V+W)\overline{T} = vT + w$.

Or

(b) If $T \in A(V)$ is nilpotent, prove that $\alpha_0 + \alpha_1 + T + ... + \alpha m T^m$, where the $\alpha_i \in F$, is invertible if $\alpha_0 \neq 0$.

Page 5 Code No.: 6377

14. (a) If V is cyclic relative to T and if the minimal polynonomial of T in F[x] is p(x), then prove that for some basis of V, the matrix of T is C(p(x)), the companion matrix of p(x).

Or

- (b) If A is invarible, prove that det $A \neq 0$, det $(A^{-1})=(\det A)^{-1}$ and det $(ABA^{-1})=\det B$ for all B.
- 15. (a) If $T \in A(V)$, prove that $T^* \in A(V)$ and $\left(T^*\right)^* = T$.

Or

(b) Let N be a normal transformation and suppose that λ and μ are two distinct characteristic roots of N. If V, W are in V are such that $VN = \lambda v$, $wN = \mu av$ prove that (v,w) = 0.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If V and W are of dimensions m and n respectively exhibit a basis of Han (v, w) over F consisting of mn elements.

Or

Page 6 Code No.: 6377

- (b) Let R be a Euclidean ring. Prove that any finitely generated R-module M is the direct sum of a finite number of cyclic submodules.
- 17. (a) For arbitrary algebras A with unit element over a field F, state and prove the analog of cayley's theorem for groups.

Or

- (b) What relation, if any, must exist between characteristic vectors of T belonging to different characteristic roots? Explain your answer.
- 18. (a) If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, prove that T statisfies a polynomial of degree n over F.

Or

- (b) Let $T \in A(v)$ and suppose that $p(x) = q_1(x)^{l1} \ q_2(x)^{l2} \dots q_k(n)^{lk}$ in F(x) is the minimal polynomial of T over F. For each $i=1,2,\dots,k$, define $V_i = \left\{v \in V \mid (V_{q_i}(T))^{li} = 0\right\}$ prove that $v_i \neq 0$ for each i and $V = V_1 \oplus V_2 \oplus \dots \oplus Vk$.
- 19. (a) Prove that the elements S and T in A(V) are similar in A(V) if and only if they have the same elementary divisions.

Or

Page 7 Code No.: 6377

(b) For $A, B \in Fn$ and $\lambda \in F$, Prove that

(i)
$$tr(\lambda A) = \lambda t_r A$$

(ii)
$$tr(A+B) = trA + trB$$
.

(iii)
$$tr(AB) = tr(BA)$$
.

 (a) Prove that to linear transformation T on V is unitary if and only if it takes an orthonomal basis of V into an orthonormal basis of V.

Or

(b) State and prove that sylvester's law of inertia.

Page 8 Code No.: 6377