Reg. No.:....

Code No.: 6885 Sub. Code: PCHM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Chemistry — Core

INORGANIC CHEMISTRY — IV

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The Mossbauer spectrum of ¹¹⁹SnCl₄ shows no quadrupole splitting, where as that of ¹¹⁹SnF₄ exhibits quadrupole splitting. Which of the following statements is correct?
 - (a) $SnCl_4$ is tetrahedral but SnF_4 is distorted octahedral
 - (b) $SnCl_4$ has field gradient but SnF_4 has no field gradient
 - (c) Quadrupole splitting is due to higher electronegativity of fluoride
 - (d) None of the above

- 2. The complex, $[Co(en)_3]^{3+}$ shows positive cotton effect. What is the absolute configuration?
 - (a) $\Lambda (D) [Co(en)_3]^{3+}$
 - (b) $\Lambda (D) [Co(en)_3]^{3+}$
 - (c) $\Delta (L) [Co(en)_3]^{3+}$
 - (d) None of these
- 3. The 2 p XPS of Cu has two peaks at 952.7 and 932.7 eV due to ———.
 - (a) Jahn-Teller distortion
 - (b) Spin-orbit coupling
 - (c) Chemical shift
 - (d) None of the above
- 4. In XPS, the binding energies of core electrons give rise to chemical shifts. Which of the following statements is true?
 - (a) Chemical shift is the same irrespective of the particular core energy level studied
 - (b) For an atom in the same chemical environment, the shift increases with increasing positive charge on the atom
 - (c) The sensitivity of the chemical shift to charge varies roughly as the inverse of the valence shell radius
 - (d) All of the above

Page 2 **Code No.: 6885**

5.	The cytochromes P-450 are regarded as oxidizing enzymes, yet they consume one equivalent of the reducing agent NADH for each catalytic cycle. Why?					
	(a)	NADH is required to provide energy to the catalytic cycle				
	(b)	NADH is required to oxidize the Fe (II) to iron in the catalytic cycle				
	(c)	NADH is required to re-reduce the iron to $Fe(II)$ in the catalytic cycle				
	(d)	None of the above				

6.	The	expecte	ed	exponent	for	the	O_2	in	the
	oxyge	enation	(ec	quilibrium)	cons	stant	equa	ation	for
	hemo	oglobin -			·.				

- (a) 4 (b) 2 (c) 2.8 (d) 4.8
- 7. Which of the following complexes are used in cancer treatment?
 - (a) Carboplatin(b) Oxaliplatin(c) Satraplatin(d) All of these
- 8. Which of the following copper proteins is involved in oxygen transport?
 - (a) Quercetinase(b) Hemocyanin(c) Tyrosinase(d) Blue Cu proteins
 - Page 3 Code No.: 6885

- 9. A large single crystal of silicon is prepared by ———— process.
 - (a) Hydrothermal method
 - (b) Czochralski process
 - (c) Sol-gel process
 - (d) Epitaxy method
- 10. Zeolitic structures with pore sizes of 2000 to 10000 pm are known as mesoporous solids. They can be prepared by
 - (a) liquid crystal templating
 - (b) sealed tube method
 - (c) precipation method
 - (d) none of the above

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Describe the application of Mossbauer spectroscopy in determination of oxidation states and π - bonding.

Or

(b) Discuss Mossbauer spectrum of the following compounds : $Fe_2(SO_4)_3$ (anhydrous) and $K4[Fe(CN)_6]$.

Page 4 **Code No.: 6885** [P.T.O.]

12. (a) What are satellite peaks in XPS? Describe the mechanisms of formation of such peaks. Give their applications in qualitative analysis.

Or

- (b) Describe the applications of photoelectron spectroscopy in explaining the structure and bonding of metal carbonyls.
- 13. (a) What are siderophores? Discuss the structures any two siderophores.

Or

- (b) Describe the structure and function of cytochrome c.
- 14. (a) Explain the structural features and function of blue copper proteins.

Or

- (b) How are the following chelating agents can be used therapeutically? Give their mode of actions.
 - (i) D-penicillamine and
 - (ii) cis-diamminedichloroplatinum(II)
- 15. (a) What are zeolites? Explain the structure and properties of zeolites.

Or

(b) Write a note on fullerenes and fullerides.

Page 5 Code No.: 6885

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

- 16. (a) Describe the applications of Mossbauer spectroscopy in determination of
 - (i) spin state crossover (SCO) and
 - (ii) cis-Trans isomers.

Or

- (b) Describe the application of Mossbauer spectroscopy in confirming the structures of $Fe_4^{(III)}$ [Fe^(II) (CN)₆]₃, Ferridoxin (Fe₄S₄(SCys)₄) and Fe₃(CO)₁₂.
- 17. (a) What is the origin of vibrationaal fine structures of PES? With examples illustrate its useful in identifying the nature of the molecular orbitals, predissociation and Jahn-Teller distortion.

Or

- (b) Discuss the photoelectron spectra of the following molecules:
 - (i) N(1s) XPS of $[Co(en)_2(NO_2)_2]NO_3$ and C(1s) XPS of CCl_3CH_3 .
 - (ii) UV-PES of NH₃ and CO₂.

Page 6 Code No.: 6885

18. (a) What are metalloporphyrins? Explain the structure and functions of hemoglobin.

Or

- (b) Discuss the structure, redox properties and biological functions of vitamin B_{12} .
- 19. (a) Write a brief account of:
 - (i) Inhibition and poisoning of enzyme action
 - (ii) Chelate therapy.

Or

- (b) Discuss the structure and role of superoxide dismutase.
- 20. (a) Discuss the structures and properties of pillared clays.

Or

(b) Explain the epitaxy, chemical vapour transport and solution methods for the preparation of single crystals with suitable examples.

Page 7 Code No.: 6885