		4/12/1
(6 pa	nges)	Reg. No. :
Co	de No. : 7124	Sub. Code : PMAE 23
M.S	c. (CBCS) DEGREE	EXAMINATION, APRIL 2019.
1	AND DESCRIPTION OF THE PROPERTY.	and Semester
7	Ma	athematics
Ele	ctive — PARTIAL I	DIFFERENTIAL EQUATIONS
		ned in July 2017 onwards)
Time	: Three hours	Maximum: 75 marks
	SECTION A -	$-(10 \times 1 = 10 \text{ marks})$
	Answer	ALL questions.
	Choose the correct	answer:
1.	The equation $\sum_{i=1}^{n}$	$_{1}F_{i}dx_{i}=0$ is called a —
	differential equation (a) linear (c) pfaffian	on. (b) non-linear (d) partial
2.	exists between two relation $F(u, v)$ explicitly is	sufficient condition that there of functions $u(x, y)$ and $v(x, y)$ a $= 0$, not involving x or y
	(a) $\frac{\partial(u,v)}{\partial(x,y)} = 0$	(b) $\partial(x, y) = 0$
		-/ \

(b) $\partial(x, y) = 0$ (d) $\frac{\partial(x, y)}{\partial(u, v)} = 0$

(c) $\partial(u,v)=0$

3.	A	differe	ntial equation is one	
	in which at least two independent variables enter.			
	(a) Ordinary	(b)	Partial	
	(c) Linear	(d)	Non - linear	
4.	$\frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial y} = 0 \text{ is a }$		— order equation.	
	(a) zero	(b)	first	
	(c) second	(d)	third	
5.	Two first order PDE's are said to be ———————————————————————————————————			
3		solution	1	
30	they have a common			
		(b)	partial non — linear	
	they have a common at (a) compatible (c) linear The first order parameter $f(x, y, z, p, q) = 0$ is a	(b) (d) artial Iso a so	partial non — linear differential equation plution of the equation	
	they have a common at (a) compatible (c) linear The first order parameter $f(x, y, z, p, q) = 0$ is a	(b) (d) artial Iso a so hese eq	partial non — linear differential equation plution of the equation	
	they have a common solution (a) compatible (c) linear The first order parameter $f(x, y, z, p, q) = 0$ is a $g(x, y, z, p, q) = 0$. The	(b) (d) artial Iso a so hese eq (b)	partial non — linear differential equation plution of the equation uations are said to be	
1.	they have a common so (a) compatible (c) linear The first order part of the first order part	(b) (d) artial lso a so hese eq (b) (d)	partial non — linear differential equation lution of the equation uations are said to be linear partial	
5.	they have a common so (a) compatible (c) linear The first order part $f(x, y, z, p, q) = 0$ is a $g(x, y, z, p, q) = 0$. The compatible (c) non-linear	(b) (d) artial lso a so hese eq (b) (d) $\frac{\partial \theta}{\partial t}$ is	partial non — linear differential equation lution of the equation uations are said to be linear partial	

Page 2 Code No.: 7124

- 8. The equation $\nabla^2 \varphi = 0$ is known as equation.
 - (a) Poisson's
- (b) Laplace's
- (c) Telegraphy
- (d) Radio
- 9. The planes perpendicular to the normals envelope a cone. This cone is called the ______ cone through the point.
 - (a) characteristic
- (b) enveloping
- (c) surface

- (d) point
- If φ is Positive definite the characteristic cones and conoids are imaginary then the equation is at P.
 - (a) parabolic
- (b) elliptic
- (c) hyperbolic
- (d) zero

SECTION B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Find the integral Curves of the equation

$$\frac{dx}{y(x+y)+az} = \frac{dy}{x(x+y)-az} = \frac{dz}{z(x+y)}.$$

Or

(b) If X is a vector such that X_0 curl X = 0 and μ is an arbitrary function x, y, z then prove that $(\mu X)_0$ curl $(\mu X) = 0$.

Page 3 Code No.: 7124

12. (a) Eliminate the constants and α and β from the equation, $(x-\alpha)^2 + (y-\beta)^2 = r^2$.

Or

- (b) Eliminate the arbitrary function f from the equation, $Z = xy + f(x^2 + y^2)$.
- 13. (a) Prove that along every characteristic strip of the equation F(x, y, z, p, q) = 0 the function F(x, y, z, p, q) is a constant.

O

- (b) Find the complete integral of the equation $\sqrt{p} + \sqrt{q} = 1$.
- 14. (a) If u is the complement function and z_1 a particular integral of a linear partial differential equation, then prove that $u + z_1$ is a general solution of the equation.

Or

- (b) Find a particular integral of the equation $(D^2 D')Z = 2y x^2.$
- 15. (a) Classify the equation, $u_{xx} + x^2 u_{yy} = 0$.

0

(b) Classify the equation,

$$(1+x^2)u_{xx} + (1+y^2)u_{yy} + xu_x + yu_y = 0.$$

Page 4 Code No. : 7124

[P.T.O.]

SECTION C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Solve the equation, $\frac{dx}{y + \alpha z} = \frac{dy}{z + \beta x} = \frac{dz}{x + \gamma y}$.

Oi

- (b) Verify that the differential equation: $(y^2 + yz)dx + (xz + z^2)dy + (y^2 xy)dz = 0$ is integrable and find its primitive.
- 17. (a) Find the general solution of the differential equation, $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y) z$.

Or

(b) Find the general integral of the partial differential equation,

$$y^2p - xyq = x(x - 2y).$$

18. (a) Prove that if a characteristic strip contains at least one integral element of F(x, y, z, p, q) = 0 it is an integral strip of the equation $F(x, y, z, z_x, z_y) = 0$.

Or

(b) Show that the equations xp = yq, z(xp + yp) = 2xy are compatible.

Page 5 Code No.: 7124

19. (a) Find the solution of the equation,

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = x - y.$$

Or

- (b) Find a particular integral of the equation : $(D^2 D')Z = e^{2x+y}.$
- (a) By separating the variables, determine the solution for the one – dimensional diffusion equation.

Or

(b) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{k} \frac{\partial z}{\partial t}$, by separating the variables.

Page 6 Code No. : 7124