(6 pages) Reg. No.:	2. The coefficient of x^5 in the expansion of $(1+x)^{10}$
Code No.: 30743 E Sub. Code: EFMA 11 FFMA 1	
	(c) 50 (d) 252
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.	3. The geometric mean of the numbers 9, 24, 125 is
First Semester	(a) 30 (b) 24
Mathematics	(c) 50 (d) 60
Foundation Course – BRIDGE MATHEMATICS (For those who joined in July 2023 onwards)	4. 6!-5!=
Time: Three hours Maximum: 75 mark	
PART A — (10 × 1 = 10 marks)	(c) 600 (d) 96
Answer ALL questions.	5. $np_{n-1} = $
Choose the correct answer.	(a) $(n-1)!$ (b) $n!$
1. If $n \in N$, then the number of terms in the	the contraction of the contraction n and $n-1$
expansion of $(a+b)^n$ is	6. If $15c_{2r-1} = 15c_{2r+4}$, then $r = $
(a) n (b) $n+1$	(a) 8 (b) 7
(c) $n-1$ (d) $2n$	(c) 3 (d) 6
	Page 2 Code No. : 30743 E

- - (a) $\cos \theta$

- $\sin \theta$
- (c) $\cos ec\theta$
- (d) $\cot \theta$
- $\sin 765^{\circ} = -$
 - (a)

(b) 1

- $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$
 - (a) 0

(b) 1

(c) -1

- $10. \quad \frac{d}{dx}(e^x) =$

 $\log x$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions.

11. (a) Find the constant term of $\left(2x^3 - \frac{1}{3x^2}\right)^{\circ}$.

Or

(b) Expand $(2x+3)^5$.

Page 3 Code No.: 30743 E

If N days contains N! minutes, find the valve of N.

Or

- Count the number of positive integers greater than 7000 and less than 8000 which are divisible by 5, provided that no digits are repeated.
- 13. (a) If $(n+2)_{P_4} = 42 \times n_{P_2}$, find the value of n.

Or

- (b) For what value on n, $n_{C_4} = 495$?
- 14. (a) Prove: $\cos\left(\frac{3\pi}{4} + x\right) \cos\left(\frac{3\pi}{4} x\right) = -\sqrt{2}\sin x$.

- (b) Prove: $\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta.$
- 15. (a) Compute: $\lim_{x\to 0} \left[\frac{x^2 + x}{x} + 4x^3 + 3 \right]$

Or

(b) Find y''' if $y = \frac{1}{x}$.

Code No.: 30743 E

[P.T.O.]

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL question.

16. (a) Find the last two digits of the number 7^{400} .

Or

- (b) The 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(x+a)^n$ are 240, 720 and 1080 respectively. Find x, a and n.
- 17. (a) For two numbers, if the arithmetic mean is Am, the geometric mean is Gm and the harmonic mean is Hm, then show that $Am \ge Gm \ge Hm$.

Or

- (b) Describe the harmonic mean.
- 18. (a) A number of four different digits is formed with the use of the digits 1, 2, 3, 4 and 5 in all possible ways.
 - (i) How many such numbers can be formed?
 - (ii) How many of them are even?
 - (iii) How many of them are exactly divisible by 4?

Or

(b) Prove: $n_{C_r} + n_{C_{r-1}} = (n+1)C_r$.

Page 5 Code No. : 30743 E

19. (a) If $A + B = 45^{\circ}$, then show that $(1 + \tan A)(1 + \tan B) = 2$.

Or

(b) Evaluate: sin18°.

20. (a) If $y = \tan^{-1} \left(\frac{1+x}{1-x} \right)$, find y'.

Or

(b) Evaluate: $\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$.

Page 6 Code No.: 30743 E