(7 pages)

Reg. No. :

Code No.: 41383 E Sub. Code: SMMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Second Semester

Mathematics - Main

ANALYTICAL GEOMETRY OF THREE DIMENSIONS

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

The equation of the tangent whose vertical angle ø is

(a)
$$\frac{l}{r} = \rho \cos \theta - \cos(\theta - \phi)$$

(b)
$$\frac{l}{r} = \rho \cos \theta + \cos(\theta - \phi)$$

(c)
$$\frac{l}{r} = \rho \cos \theta - \sin(\theta - \phi)$$

(d)
$$\frac{l}{r} = \rho \cos \theta + \sin(\theta - \phi)$$

The asymptotes of the conic $\frac{l}{r} = 1 + e \cos \theta$ is

(a)
$$\frac{e^2 - 1}{e} \left\{ \cos \theta \pm \frac{\sin \theta}{\sqrt{e^2 - 1}} \right\}$$

(b)
$$\frac{e^2 - 1}{e} \left\{ \sin \theta \pm \frac{\sin \theta}{\sqrt{e^2 - 1}} \right\}$$

(c)
$$\frac{e^2+1}{e}\left\{\cos\theta\pm\frac{\sin\theta}{\sqrt{e^2-1}}\right\}$$

- (d) None
- $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} = r$ is the equation of the
 - (a) Circle
- (b) Straight line
- Ellipse
- (d) Hyperbola
- $x^{2} + y^{2} + z^{2} 2x + 6y + 4z 35 = 0$ is then the centre is, -

 - (a) (-1, 3, 2) (b) (1, -3, -2)

 - (c) (-2, 6, 4) (d) (2, -6, -4)
- When a sphere is a cut by a plane through its is obtained.
 - Circle
- Ellipse
- Parabola
- Hyperbola

Code No.: 41383 E Page 2

- A cylinder is a surface generated by -
 - Straight line (a)
- Sphere
- Circle (c)
- None
- The fixed distance of the right circular cylinder is
 - Semi latus rectum (b) Radius
 - Axis (c)

- None
- The constant angle of right circular cone is
 - acute angle
- semi vertical
- right angle
- (d) none
- Equation of hyperbolic of one sheet is
 - (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (b) $\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
 - (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ (d) None
- 10. The intersection of $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
 - (a) a parabola
- an ellipse
- a hyperbola (c)
- a circle

Page 3 Code No.: 41383 E

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 250 words.

Show that the points (5, 3, -2), (3, 2, 1) and 11. (-1, 0, 7) are collinear.

Or

- Find the angle between two diagonals of a cube.
- Derive the equation of the plane passing 12. through the points (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) .

Or

- Find the distance between the parallel planes 2x - 2y - z = 3 and 4x - 4y + 2z + 5 = 0.
- (a) Find the equation of the image of the line 13. plane 2x - 3y + 3 + 2z = 0.

Or

(b) Find the shortest distance between the lines $\frac{x-3}{2} - \frac{y-4}{2} - \frac{z+2}{2} \cdot \frac{x-1}{2} - \frac{y+7}{2} = \frac{z+2}{2}$

Page 4 Code No.: 41383 E

[P.T.O.]

14. (a) A sphere of constant radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.

Or

- (b) Show that the plane 2x-y-2z=16 touches the sphere $x^2+y^2+z^2-4x+2y-2z-3=0$ and find the point of contact.
- (a) Find the equation of the cone of the second degree with passes through the axes.

Or

(b) Find the equation of a right circular cylinder of radius 3 with axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

16. (a) Show that the four points (4, -1, 2), (0, -2, 3), (1, -5, -1) and (2, 0, 1) lie on a sphere whose centre is (2, -3, 1). Find the radius of the sphere.

Or

Page 5 Code No.: 41383 E

- (b) Show that the straight lines whose direction cosines are given by al+bm+cn=0, fmn+gnl+hlm=0 are perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$ and parallel if $\sqrt{af}+\sqrt{hg}+\sqrt{ch}=0$.
- 17. (a) Show that the following points are coplanar and find the equation of the plane on which they lie
 - (i) (0, -1, -1), (-4, 4, 4), (4, 5, 1) and (3, 9, 4)
 - (ii) (0, 2, -4), (-1, 1, -2), (-2, 3, 3) and (-3, -2, 1).

Or

(b) Show that the equation

$$x^{2} + y^{2} + 4z^{2} + 4yz + 4zx + 2xy + 7(x + y + 2z) + 12 = 0$$

represents a pair of parallel planes and find the distance between them.

18. (a) The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A,

B, C. Find the coordinates of the orthocentre of the triangle ABC.

Or

Page 6 Code No. : 41383 E

- (b) Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}$; $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Also their points intersection and the plane through them.
- 19. (a) A plane passes through a fixed point (a, b, c) and cuts the axes A, B, C show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{x} + \frac{c}{z} = 2$.

Or

- (b) The plane ABC, whose equation is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B, C. Find the equation to the circumcircle of the triangle ABC and obtain the coordinates of its centre and radius.
- 20. (a) Find the condition for the equation $F(x, y, z) = ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0$

to represent a cone. Or

(b) Find the equation of the right circular cylinder described on the circle through the points (a, 0, 0), (0, a, 0), (0, 0, a) as a guiding curve.

Page 7 Code No.: 41383 E