(6 pages)	Reg. No. :
Code No. : 40556 E	Sub. Code : SMPH 12
	REE EXAMINATION, IBER 2019.
First	Semester
Physic	s — Main
PROPERTIES OF MA	TTER AND ACOUSTICS
(For those who joine	d in July 2017 onwards)
Time : Three hours	Maximum: 75 marks
PART A — (10	0 × 1 = 10 marks)
Answer A	LL questions.
Choose the correct ar	nswer :
The expression for (F-Force, A-Area of contract)	or stress is ————. ross section)
(a) F/A	(b) A/F

	and				
(a)	linear stress and	linear	strai	n	
(b)	volume stress and	l volui	ne sti	rain	
(c)	tangential stress	and sh	earir	ig strai	in
(d)	none				
The	bending moment to young	prod s mod	luced ilus.	in a	beam i
(a)	directly proportio	nal			
(b)	inversely proport	ional			
(c)	equal				
0.32					
(d)	none				
In u	none niform bending the highs modulus (q) by				related t
In u your	niform bending th			n	related t
In u your (a)	niform bending the (q) by	y the r	elatio	on q ²	related t
In u your (a)	niform bending the g 's modulus g by g	y the r (b) (d)	elatio y ∞ non	on q ²	related t
In u your (a)	niform bending the niform bending the $y \propto q$ $y \propto \frac{1}{q}$	y the r (b) (d)	y ∞ non to —	on q ²	related t
In u your (a) (c) Soar	niform bending the new modulus (q) by $y = \sqrt{q}$ $y = \sqrt{q}$ by bubble is spherically $y = \sqrt{q}$	y the r (b) (d) al due	y ∞ non to —	on q^2 e	related t
In u your (a) (c) Soar (a) (c)	niform bending the next material g is modulus f by f	(b) (d) (d) (d) (d) (d)	y ∞ non to — elas non	on q ² e eticity	related t
In u your (a) (c) Soar (a) (c)	niform bending the new modulus (q) by $y = \sqrt{q}$ $y = \sqrt{\frac{1}{q}}$ bubble is spherically viscosity surface tension	(b) (d) (d) (d) (d) (d)	y ∞ non to — elas non	e sticity e is —	related t

		The second law of transverse vibrations of strings state that, the frequency is directly proportional to						
	2500000		ALCOHOLD .		(when/and			
constant).								
	(a)	Square		(b)	Square root	14		

- Cube (c)

- None
- The distance between two successive anti-nodes is
 - (a) 2.

2/4

2/2 (c)

- 9. loudness sound measured
 - decibel
- pascal
- coulomb
- (d) none
- The frequency range of audible sound waves is
 - below 20 Hz
 - above 20000 Hz
 - 20 Hz to 20000 Hz
 - (d) none

Code No.: 40556 E Page 3

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

Define the three elastic modulii. 11.

Or

- Write short note on I-section girders.
- Derive the expression for the bending 12. (a) moment of beam.

Or

- Derive the expression for the depression of a cantilever.
- Explain the variation of viscosity of a liquid 13. with temperature.

Or

- Write short note on lubricants.
- What are free and damped vibrations? Give 14. (a) examples for each case.

Or

State and explain the laws of transverse vibrations of strings.

> Code No.: 40556 E Page 4

> > [P.T.O.]

(a) What are ultrasonic waves? Give any three properties of them.

Or

(b) Explain any two applications of ultrasonic waves.

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

 (a) Derive the expression for Poisson's ratio in terms of elastic constants.

Or

- (b) Explain the determination of rigidity modulus using torsion pendulum.
- (a) Describe an experiment to determine the young's modulus of the material of a beam by uniform bending method, using pin and microscope.

Or

(b) Describe an experiment to determine the young's modulus of the material of a beam by non-uniform bending method, using pin and microscope.

Page 5 Code No.: 40556 E

 (a) Explain the Jaeger's method of studying the effect of temperature on surface tension.

Or

- (b) Derive the Poiseuille's formula for coefficient of viscosity.
- (a) Explain the determination of A.C frequency using sonometer.

Or

- (b) Explain Melde's string method of determining the frequency of a tuning fork by longitudinal mode.
- (a) Explain the production of ultrasonic waves by piezo-electric method.

Or

(b) Derive Sabine's formula for the reverberation time.

Page 6 Code No. : 40556 E