(7 Pages)

Reg. No. :

Code No. : 20547 E Sub. Code : JACA 21/ SACA 21/AACA 21

B.C.A. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester

Computer Application — Allied

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

(For those who joined in July 2016 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then $A \times B$

consists of ——— elements.

(a) 3 (b) 4

(c) 5 (d) 6

2.	If A	If $A = \varphi$ and $B = \{2, 3, 4\}$, then $A \cap B =$			
	(a)	arphi	(b)	{2}	
	(c)	{3}	(d)	{4}	
3.	Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (3, 6)\}$. Then f is — function.				
	(a)	one-to-one	(b)	onto	
	(c)	constant	(d)	identity	
4.	$f: R \rightarrow R$ given by $f(x) = 5$ is called a — function.				
	(a)	identity	(b)	bijective	
	(c)	constant	(d)	onto	
5.	The contrapositive statement of $P \rightarrow Q$ is ———				
	(a)	$Q \rightarrow P$	(b)	$\neg P \rightarrow \neg Q$	
	(c)	$\neg Q \rightarrow \neg P$	(d)	$P \rightarrow \neg Q$	
6.	$P \lor \neg P \Leftrightarrow$ ———				
	(a)	P	(b)	T	
	(c)	F	(d)	$\neg P$	
7.	A g edge	A graph that has neither self-loops nor parallel edges is called — graph.			
	(a)	multi	(b)	trivial	
	(c)	simple	(d)	regular	
			Page 2	Code No. : 20547 E	

8. A vertex of degree one is called — vertex.

- (a) isolated (b) pendant
- (c) path (d) null

9. A tree is connected — graph.

- (a) Acyclic (b) Cyclic
- (c) Euler (d) Hamiltonian

10. The number of vertices in a binary tree is always

(a) even(b) odd(c) center(d) path

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) In an examination 75% of the students passed in Physics and 85% passed in Chemistry 70% passed in both. What percentage of the students failed in both?

 \mathbf{Or}

(b) Show that the relation ρ in the set Z of integers given by ρ = {(a, b) : 2 divides a - b} is an equivalence relation.

Page 3 Code No. : 20547 E

12. (a) Explain the different types of functions with example.

Or

(b) Let $f : X \to Y$ be a bijection. Prove that $f^{-1}: Y \to X$ is also a bijection and $f \circ f^{-1} = I_y$ and $f \circ f^{-1} = I_x$.

13. (a) Show that
$$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$$
.

- (b) Construct the truth table to show that $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$ is a tautology.
- 14. (a) Let *G* be a graph with *n* vertices and *e* edges. The degree of vertices in the graph is either *l* or l + 1. If p (p > 0) vertices of the graph have degree 1, show that p = n (l + 1) – 2 *e*.

- (b) Define :
 - (i) regular graph
 - (ii) complete graph
 - (iii) bipartite graph with example.
- 15. (a) Prove that every walk in a graph G contains a path.

Or

(b) Prove that the number of pendant vertices in a binary tree is (n + 1)/2.

Page 4 Code No. : 20547 E [P.T.O.] PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

- 16. (a) For any three sets A, B, C prove the following : (i) $(A - B) - C = A - (B \cup C)$
 - (ii) $A (B C) = (A B) \cup (A \cap C)$

Or

- (b) Show that if A and B are any two sets, then A-B, B-A and $A \cap B$ are pairwise disjoint.
- 17. (a) Which of the following functions are bijection? If f is a bijection find f^{-1}
 - (i) $f: R \to R$ defined by f(x) = x + 5
 - (ii) $f: R \to R$ defined by f(x) = 3x

(iii) $f: R^* \to R^*$ defined by $f(x) = \frac{1}{x}$

Or

- (b) Construct a function such that
 - (i) f is 1-1 but not onto
 - (ii) f is into but not 1-1
 - (iii) f is both 1-1 and onto
 - (iv) f is neither 1-1 nor onto

Page 5 Code No. : 20547 E

18. (a) Check whether the following formulae is a tautology or a contradiction

 $\neg (P \lor (Q \land R)) \leftrightarrow (P \lor Q) \land (P \lor R)$

Or

(b) Obtain the principal disjunctive normal form of

 $(P \to (Q \lor R)) \land (\neg Q) \land (\neg R) \land Q$

- 19. (a) Explain the following with example :
 - (i) weighted graph
 - (ii) directed graph
 - (iii) undirected graph
 - (iv) mixed graph

Or

- (b) Prove the following :
 - (i) the number of vertices of odd degree in a graph G is always even.
 - (ii) if a simple graph G has at least two vertices, then there at least two vertices that have the same degree.

Page 6 Code No. : 20547 E

20. (a) Prove that a connected graph G is Eulerian iff every vertex has an even degree.

Or

(b) Prove that a graph G is connected iff for any partition of V into disjoint subsets V_1 and V_2 there is an edge of G joining a vertex of V_1 to a vertex of V_2 .

Page 7 Code No. : 20547 E