(6 pages)

Reg. No.:

Code No.: 9368

Sub. Code: HMAM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2015.

Fourth Semester

Mathematics

MEASURE AND INTEGRATION

(For those who joined in July 2012 onwards)

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- For any set A and any number y, $m^*(A+y)=$

 - (a) $m^*(A) + y$ (b) $m^*(A) y$
- $m^*(A)$ (d) $m^*(\{y\})$.
- The translate of a measurable set is -2.
 - translate (a)
 - (b) measurable
 - integrable
 - not necessarily measurable.

- Let φ and ψ be simple functions defined on a set of finite measure. If $\varphi \leq \psi$ on E, then -

- (c) $\int \varphi = \int \psi$ (d) $\int \varphi = \int \psi$ a.e.
- Let f be a bounded measurable function on a set of finite measure E. Then -

 - (a) $\left| \int_{E} f \right| \le \int_{E} |f|$ (b) $\left| \int_{E} f \right| = \int_{E} |f|$
 - (c) $\left| \int f \right| \ge \int |f|$ (d) $\left| \int f \right| > \int |f|$
- Let f be an increasing function on [a,b]. Then $m^*\{x \in (a,b) | \overline{D}f(x) = \infty\} =$

(b) (a,b)

- b-a
- Let f be Lipschitz function on [a,b] and $|f(u)-f(v)| \le c|u-v|$ for all u,v in [a,b]. Then

 - (a) b-a (b) c(b-a)
 - (c) c(b+a) (d) a+b+c

Page 2

Code No.: 9368

- Let (X, M, μ) be a measurable space. If A and B are measurable sets, $A \subseteq B$ and $\mu(A)=0$, then $\mu(B \sim A) = ----$
 - - $\mu(A)$ (b) $\mu(B)$
 - $\mu(B) + \mu(B^c)$ (d) $\mu(X)$.
- If M contains all subsets of sets of measure zero, then the measurable space (X, M, μ) is called
 - complete (a)
- zero measurable
- finite measurable (d) incomplete.
- Let (X, M, μ) be a measurable space and ψ , a non 9. negative simple function on X. If A and B are disjoint measurable subsets of X, then $|\psi d\mu|$

- (c) $\int \psi d\mu + \int \psi d\mu$ (d) $\int \psi d\mu \int \psi d\mu$.

Code No.: 9368 Page 3

- Let (X, M, μ) be a measurable space and $\{h_n\}$ a sequence of non negative integrable functions on X. Suppose that $\{h_n(x)\}\to 0$ for almost all x in X. Then $\{h_n\}$ is uniformly integrable and tight if and only if $\lim_{n\to\infty} \int_{V} h_n d\mu = -$

(b) 1

(c)

SECTION B — $(5 \times 5 = 25 \text{ marks})$ Answer ALL questions, choosing either (a) or (b).

11. Prove that any countable set has outer measure zero.

Or

- Show that Lebesgue measure is countably additive.
- State and prove Egoroff's theorem. 12. (a)

Or

- Let f be a bounded measurable function on a set of finite measure E. Show that f is integrable over E.
- Let f be an increasing function on [a,b]. Prove that f' is integrable over [a,b] and $\int f' \leq f(b) - f(a).$

Or

Code No.: 9368 Page 4 [P.T.O.]

- (b) Let the function f be of bounded variation on the closed, bounded interval [a,b]. Prove that f is the difference of two increasing function on [a,b].
- 14. (a) Prove that the union of countable collection of measurable sets is measurable.

Or

- (b) State and prove Borel-Cantelli lemma.
- 15. (a) Show that if f is a non negative measurable function on X, then

$$\int_{\mathbb{R}} f d\mu = 0 \text{ if and only if } f = 0 \text{ a.e. on } X.$$

Or

(b) Show that if f is integrable over X, then f is integrable over every measurable subset of X.

SECTION C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If a σ -algebra of subsets of R contains intervals of the form (a, ∞) prove that it contains all intervals.

Or

(b) Show that a set E is measurable if and only if for each $\epsilon > 0$, there is a closed set F and open set O for which $F \subseteq E \subseteq O$ and $m^*(O \sim F) < \epsilon$.

Page 5 Code No.: 9368

17. (a) State and prove simple-approximation theorem.

Or

- b) State and prove Lusin's theorem.
- 18. (a) State and prove Lebesgue's theorem.

Or

- (b) Let the function f be continuous on the closed bounded interval [a,b]. Prove that f is absolutely continuous on [a,b] if and only if the family of divided difference functions $\{Diff_h t\}_{0 < h \le 1}$ is uniformly integrable over [a,b].
- 19. (a) State and prove Hahn's lemma.

Or

- (b) Let γ be a signed measure on the measurable space (X,M). Then show that there is a positive set A for γ and a negative set B for γ for which $X = A \cup B$ and $A \cap B = \phi$.
- 20. (a) State and prove the Vitali convergence theorem.

Or

 State and prove Fatou's lemma on a general measure space.

Page 6 Code No.: 9368