(6 pages) **Reg. No. :**

Code No.: 6840 Sub. Code : PMAM 25

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester

Mathematics — Core

GRAPH THEORY

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. If G is a forest, then the number of edges is
 - (a) $\varepsilon = \gamma \omega$ (b) $\varepsilon = \gamma 2$ (c) $\varepsilon = \gamma$ (d) $\varepsilon = \frac{\gamma}{2}$
- 2. If any two vertices of G are connected by atleast two internally disjoint paths, then G is
 - (a) 2-connected (b) 3-connected
 - (c) 4-connected (d) 5-connected

Page 2 Code No. : 6840

8.	$\chi(K_4, 4) =$		
	(a) 1	(b) 2	
	(c) 4	(d) 0	
9.	If <i>G</i> is a loopless graph with $\Delta = 3$, then χ'		
	(a) = 3	(b) $= 2$	
	(c) < 4	(d) ≤ 4	
10.	If G is 4-chromatic, the G contains a subdivision of		
	(a) <i>K</i> ₁	(b) <i>K</i> ₂	
	(c) K ₃	(d) K_4	
PART B — $(5 \times 5 = 25 \text{ marks})$			

Answer ALL questions, by choosing either (a) or (b).

 (a) Prove that every tree has either one center or two adjacent centers.

Or

(b) Prove that a connected graph G is a tree if and only if every edge of G is a cut edge.

Page 3 Code No. : 6840

 (a) Prove that a connected graph has an Euler trial if and only if it has atmost two vertices of odd degree.

\mathbf{Or}

- (b) Explain the traveling salesman problem.
- (a) Prove that every 3-regular graph without cut edges has a perfect matching.

Or

- (b) Let M and N be disjoint matchings of G with |M| > |N|. Prove that there are disjoint matchings M^1 and N^1 of G s.t. $|M^1| = |M| 1$, $|N^1| = |N| + 1$ and $M^1 \cup N^1 = M \cup N$.
- 14. (a) For any two positive integers k and l, prove that $r(k, l \ge 2^{\frac{m}{2}})$ where $m = \min\{k, l\}$.

Or

- (b) State and prove Turan's Theorem.
- 15. (a) If G is a K-Critical, prove that $\delta \ge K 1$.

Or

(b) Prove that every critical graph is a block.

Page 4	Code No. : 6840
	[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, by choosing either (a) or (b).

16. (a) Prove that $\tau(K_n) = n^{n-2}$.

Or

- (b) Prove that the spanning tree obtained by Kruskal's algorithm is an optimal tree.
- 17. (a) Let G be a simple graph with degree sequence $(d_1, d_2, ..., d_{\gamma})$ where $d_1 \leq d_2 \leq ... \in d_{\gamma}$ and $\gamma \geq 3$. Suppose that there is no value of $m < \frac{\gamma}{2}$ for which $d_m \leq m$ and $d_{8-m} < \gamma m$. Prove that G is Hamiltonian.

Or

- (b) If G is Eulerian, prove that any trial in G constructed by Fleury's algorithm is an Euler Tour of G.
- 18. (a) State and prove Hall's theorem.

Or

(b) Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in minimum covering.

Page 5 Code No. : 6840

19. (a) In any graph G with $\delta(G)>0\,,$ prove that $\alpha^1+\beta^1=\gamma\,.$

Or

- (b) For any two integers k≥2, l≥2, prove that r(k, l)≤r(k, l-1)+r(l-1, 2). If r(k, l-1) and r(k-1, l) are both even, prove that strict inequality holds.
- 20. (a) State and prove Brook's theorem.

Or

(b) If G is a tree, prove that $\pi_k(G) = k(k-1)^{\gamma-1}$ and hence find the chromatic polynomial of

Page 6 Code No. : 6840