(8 pages)

Reg. No. :

Code No.: 7832

Sub. Code: PMAM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

First Semester

Mathematics - Core

ANALYSIS - I

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- The set of all subsequential limits of a sequence in a metric space X from a ———————— subset of X.
 - (a) open
 - (b) closed
 - (c) countable
 - (d) perfect

- A metric space is called separable if it contains a
 ——— dense subset.
 - (a) countable
- (b) uncountable
- (c) perfect
- (d) none of these
- $\lim_{n\to\infty} \left[1+\frac{1}{n}\right]^n = -$
 - (a) 0

(b)

(c) e

- (d) None of these
- 4. The series $\sum \frac{(-1)^n}{n}$ is ______.
 - (a) converges
 - (b) diverges
 - (c) converges absolutely
 - (d) none of these
- 5. If the series $\sum |a_n|$ converges then the series $\sum a_n$ is said to ———.
 - (a) diverges
 - (b) converges
 - (c) converges absolutely
 - (d) converges non absolutely

Page 2 Code No.: 7832

- 6. Let $\alpha = \lim_{n \to \infty} \sup \sqrt[n]{a_n}$ then $\sum a_n$ diverges if
 - (a) $\alpha = 1$

(b) $\alpha < 1$

(c) α>1

- (d) $\alpha = 0$
- Let f be monotonic on (a, b) then the set of points of (a, b) at which f is discontinuous is ______.
 - (a) countable
- (b) uncountable
- (c) atmost countable (d)
- none of these
- Let f be a continuous mapping of a metric space X into a metric space Y then f is uniformly continuous on X if X is _______.
 - (a) connected
- (b) closed
- (c) compact
- (d) none of these
- 9. Let f be defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$
 - (a) f is differentiable at all points x
 - (b) f is differentiable at x = 0 and f is differentiable at other points
 - (c) f is not differentiable at all points x
 - (d) none of these

Page 3 Code No.: 7832

- Suppose f is differentiable in (a, b) if then f is monotonically increasing.
 - (a) f'(x) = 0
 - (b) $f'(x) \ge 0$
 - (c) $f'(x) \le 0$
 - (d) None of these

PART B
$$-$$
 (5 \times 5 = 25 marks)

Answer ALL questions, choosing either (a) or (b).

 (a) If E is an infinite subset of compact set K. Prove that E has a limit point in K.

Or

- (b) Let K be a positive integer. If $\{I_n\}$ is a sequence of K -cells such that $I_n \supset I_{n+1}$, $n=1,\,2,\,3,...$ then prove that $\prod_{n=1}^{\infty}I_n$ is not empty.
- 12. (a) Prove that $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Or

b) Prove that e is irrational.

Page 4 Code No.: 7832 [P.T.O.]

13. (a) State and prove Ratio test.

Or

- (b) If $\sum a_n = A$ and $\sum b_n = B$ then prove that $\sum (a_n + b_n) = A + B$ and $\sum C a_n = CA$ for any fixed C.
- (a) Prove that composition of continuous function is continuous.

Or

- (b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y, then prove that f(X) is compact.
- 15. (a) Let f be defined by $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ prove that f is differentiable at all points except x = 0.

Or

(b) Let f be defined on [a, b]. If f is differentiable at a point $x \in [a, b]$ then prove that f is continuous at x.

Page 5 Code No.: 7832

PART C
$$-$$
 (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) State and prove Heine Borel theorem.

Or

- (b) Prove that Cantor set is a perfect set.
- 17. (a) Prove that:
 - (i) $\lim_{n\to\infty} \sqrt[n]{n} = 1.$
 - (ii) If p > 0 and α is a real then $\lim_{n \to \infty} \frac{n^{\infty}}{(1+p)^n} = 0.$

Or

- (b) Prove that if \overline{E} is the closure of a set E in a metric space X then $diam \overline{E} = diam E$.
- 18. (a) Suppose:
 - (i) $\sum_{n=0}^{\infty} a_n$ converges absolutely
 - (ii) $\sum_{n=0}^{\infty} a_n = A$

Page 6 Code No.: 7832

(iii)
$$\sum_{n=0}^{\infty} b_n = B$$

(iii)
$$\sum_{n=0}^{n} b_n = B$$

(iv) $C_n = \sum_{k=0}^{n} a_k b_{n-k} n = 0, 1, 2...$

then prove that $\sum_{n=0}^{\infty} C_n = AB$.

Or

- Prove that for any sequence $\{C_n\}$ of positive $\text{numbers, } \lim_{n\to\infty} \sqrt[q]{C_n} \leq \lim_{n\to\infty} \sup \frac{C_{n+1}}{C_n} \, .$
- Let f be monotonically increasing on (a, b) 19. then prove that f(x+) and f(x-) exists at every point of x of (a, b). More precisely, $\sup f(t) = f(x-) \le f(x) \le f(x+) = \inf f(t)$

Or

Let f be continuous mapping of a compact metric space X into a metric space Y then prove that f is uniformly continuous on X.

> Code No.: 7832 Page 7

x < t < b.

State and prove Taylor's theorem. 20.

Or

Chain rule State and prove differentiation.

Page 8

Code No.: 7832