(7 pages)

Reg. No. :

Code No.: 7418

Sub. Code: ZCHM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023

Third Semester

Chemistry - Core

ORGANIC SPECTROSCOPY AND REARRANGEMENT

(For those who joined in July 2021-2022 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

1. λ_{max} for the following compound is

- (a) 262nm
- (b) 298nm
- (c) 245nm
- (d) 255nm

- 2. Solution of Iodine in benzene shows an intense band around 300nm due to ———.
 - (a) $\pi \pi^*$ transition
 - (b) $n \pi^*$ transition
 - (c) charge transfer complex
 - (d) extensive conjugation
- 3. The separation between the centers of the peaks of a doublet (in Hz) is called as ————.
 - (a) spin constant
 - (b) coupling constant
 - (c) spin-spin coupling
 - (d) chemical shift
- 4. The ¹H-NMR spectrum of CH₃OCHClCH₂Cl will exhibit
 - (a) 3 proton doublet, 1 proton singlet and 2 proton doublet
 - (b) 3 proton singlet, 1 proton singlet and 2 proton doublet
 - (c) 3 proton singlet, 1 proton triplet and 2 proton doublet
 - (d) 3 proton triplet, 1 proton triplet and 2 proton triplet

Page 2 Code No.: 7418

	(c)	pentan-3-one	e (d)	pentan-2-one
6.	The mass of metastable ion produced when a fragment of mlz 77 decomposes by loss of acetylene to a fragment of m/z 51 is ————.			
	(a)	116.25	(b)	0.66
	(c)	33.7	(d)	26
7.	(a)	als are not vis methyl carbo methylene ca quarternary all the above	on arbon carbon	in HETCOR.
8.	Which of the following carbons produces negative peak in DEPT-135 spectrum?			
	(a)	CH	(b)	CH_2
	(c)	CH ₃	(d)	R ₄ C
9.	Reagent used in Dakin rearrangement is			
	(a)	H ₂ O ₂ /NaOH	(b)	CF ₃ CO ₃ H
	(c)	SeO_2	(d)	HIO ₄
			Page 3	Code No. : 7418

Which of the following compounds undergoes

(b) butanone

McLafferty rearrangement?

(a) acetone

- 10. Oxidation of acetophenone using perbenzoic acid gives
 - (a) acetone
 - (b) phenyl acetate
 - (c) benzaldehyde
 - (d) methylbenzoate

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) State Axial haloketone rule. Discuss two applications of the rule.

Or

- (b) What are the factors that affect IR absorption frequency of Carbonyl compounds?
- 12. (a) How is NOE useful in stereochemical analysis?

Or

b) Briefly explain chemical exchange.

Page 4 Code No.: 7418 [P.T.O.]

13. (a) Write a short note on McLafferty rearrangement.

Or

- (b) With examples explain the fragmentation pattern in alcohols and acids.
- 14. (a) Explain ¹H-¹³C COSY spectrum with an example.

Or

- (b) Write a short note on DEPT.
- 15. (a) Discuss the mechanism and migratory aptitude of groups in dienone-phenol rearrangement.

Or

(b) Describe the steps involved in Von-Richter rearrangement.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Discuss the effect of solvents and hydrogen bonding on λ_{max} values.

Or

(b) State octant rule. Explain how it is used to determine stereochemistry of steroids.

Page 5 Code No.: 7418

17. (a) Explain the factors influencing chemical shift of protons.

Or

- (b) Write short notes on non-first order spin-spin splitting.
- 18. (a) Explain the following techniques
 - (i) FAB
 - (ii) CI

Or

- (b) How is MALDI-MS and TOF techniques useful in ionization?
- 19. (a) Propose a structure for a compound of molecular formula C₉H₈O, whose mass spectrum shows molecular ion peak at m/z 132, base peak at m/z 131 and a significant peak at m/z 103. Its IR spectrum has a strong absorption at 1690cm⁻¹. The UV spectrum has an intense band at 284nm and weak band at 308nm. The compound shows following ¹HNMR absorptions: δ 6.7(1H dd, J = 16Hz J = 8Hz), 7.4 (5H m), 7.45 (1H d, J = 16Hz), 9.75 (1H d, J = 8Hz).

Or

Page 6 Code No.: 7418

- (b) A compound with molecular formula $C_8H_8O_2$ shows bands at 3200cm^{-1} and 1700cm^{-1} in its IR spectrum. The ¹HNMR spectrum shows peaks at $\delta=10.9\text{ppm}$ (1H s), 7.2ppm (5H s) and 3.6ppm (2H s). The ¹³CNMR has four peaks at $\delta=130\text{ppm}$, one peak at $\delta=178.3\text{ppm}$ and another peak at $\delta=41$ ppm. Its mass spectrum shows a strong molecular ion peak at m/z 136 and base peak at m/z 91. Suggest a structure for the compound.
- 20. (a) (i) Explain the term memory effect.
 - (ii) Show Ring contraction or enlargement in rearrangement with Demjanov reaction as example.

Or

- (b) Discuss the mechanism and migratory aptitude of groups in
 - (i) Dakin rearrangement
 - (ii) Benzilic acid rearrangement

Page 7 Code No.: 7418