Reg. No. :

Code No. : SS 30345 E Sub. Code : JAMA 21/ SAMA 21

B.Sc. (CBCS) DEGREE (Special Supplementary) EXAMINATION, APRIL 2020.

Second/Fourth Semester

Mathematics-Allied

VECTOR CALCULUS AND FOURIER SERIES

(For those who joined in July 2016 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

1. If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then $\nabla \times \overline{r} =$ _____.

- (a) 0 (b) 1
- (c) $\overline{0}$ (d) 3

(8 pages)

2.	The	unit	normal	to	the	curved	surface	of	the
	cylin	der x	$x^2 + y^2 = 4$	l; z	= 0 a	and $z = 3$	3 is		

	(a)	$x\vec{i} + y\vec{j}$	(b)	$\frac{x\vec{i}+y\vec{j}}{2}$
	(c)	$\frac{x\vec{i}+y\vec{j}}{3}$	(d)	$\frac{x\vec{i} + y\vec{j}}{4}$
3.	If $x = 0$	D is the D; $x = 2$; $y = 0$; $y = 2$	regio then	by bounded by $\iint_D dx dy =$
	(a)	2	(b)	1
	(c)	4	(d)	$\frac{1}{4}$
4.	$\int_{0}^{1} \int_{0}^{2} \int_{0}^{3}$	dx dy dz =		
	(a)	1	(b)	6
	(c)	8	(d)	27
5.	If \bar{f} the $\int_C \bar{f} \cdot d$	$= x^{2}\vec{i} - xy\vec{j} \text{ and } C$ points (0, 0) $d\vec{r} =$	is the) ar	e straight line joining nd (1, 1) then
	(a)	1	(b)	-1
	(c)	2	(d)	0

Page 2 Code No. : SS 30345 E

- 6. If *R* is the projection of the surface *S* on the *yz*-plane then $\iint_{S} \overline{f} \cdot \overline{n} \, ds = ----$ (a) $\iint_{R} \frac{\overline{f} \cdot \overline{n}}{\left|\overline{n} \cdot \overline{k}\right|} dx \, dz$ (b) $\iint_{R} \frac{\overline{f} \cdot \overline{n}}{\left|\overline{n} \cdot \overline{i}\right|} dy \, dz$
 - (c) $\int_C \bar{f} \cdot d\bar{r}$ (d) 0
- 7. If *V* is the volume enclosed by the closed surface *S* then the value of $\iint_{S} \overline{r} \cdot \overline{n} ds$ is ______.
 - (a) $3V^2$ (b) 3V
 - (c) 6 V (d) 0
- 8. Gauss divergence theorem connects
 - (a) Line integral and double integral
 - (b) Line integral and surface integral
 - (c) Double integral and surface integral
 - (d) Surface integral and volume integral
- 9. The value of a_0 in the Fourier series expansion for the function $f(x) = x; -\pi < x < \pi$ is
 - (a) 0 (b) 1
 - (c) π (d) π^2

Page 3 Code No. : SS 30345 E

10. If
$$f(x)$$
 is an odd function in the interval
 $-\pi < x < \pi$ then
(a) $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$; $b_n = 0$
(b) $a_n = 0$; $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin x \, dx$
(c) $a_n = 0$; $b_n = 0$
(d) none of these

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) If
$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$$
 and $r = |\overline{r}|$ then prove that $\nabla \cdot (r^n\overline{r}) = (n+3)r^n$.

(b) If
$$\nabla \varphi = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$$

then find the value of φ .

12. (a) Evaluate
$$\int_{0}^{\pi} \int_{0}^{a\cos\theta} r\sin\theta \, dr \, d\theta.$$

(b) Evaluate
$$\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} xyz \ dz \ dy \ dx \ .$$

Page 4 Code No. : SS 30345 E [P.T.O.]

(a) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ if $\overline{F} = 3xy\overline{i} - 4z\overline{j} + 10x\overline{k}$ 13. along the curve $x = t_{+1}^2$; $y = 2t^2$; $z = t^3$ from t = 0 to t = 2.

Or $\int_{S} \overline{A} \cdot \overline{n} \, ds$ Evaluate (b) where

 $\overline{A}=\!18z\overline{i}-\!12\overline{j}+\!3y\overline{k}$ and S is the part of the plane 2x + 3y + 6z = 12 in the first octant.

14. Using Green's theorem, evaluate (a) $\int (xy - x^2) dx + x^2 y dy$ along the closed curve *C* formed by x = 1; y = 0 and y = x.

Or

If $\bar{f} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and *V* is the volume (b) enclosed by the cube $0 \le x, y, z \le 1$ then evaluate $\iiint_V \nabla \cdot \bar{f} \, dV$.

15. (a) Find the cosine series for
$$f(x) = x$$
 in $(0, \pi)$.

(b) Find the Fourier series of

$$f(x) = \begin{cases} -1 & if -\pi < x \le 0 \\ 1 & if \ 0 \le x < \pi. \end{cases}$$

Page 5 Code No. : SS 30345 E

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) (i) Find the directional derivative of $\varphi = x + xy^2 + yz^2$ at (0, 1, 1).
 - (ii) Prove that $div (\overline{f} \times \overline{g}) = \overline{g} \cdot curl \ \overline{f} - \overline{f} \cdot curl \ \overline{g}$.

 \mathbf{Or}

- (b) (i) If \overline{f} is solenoidal then prove that curl curl curl curl $\overline{f} = \nabla^4 \overline{f}$.
 - (ii) Find the value of the constant 'a' so that the vector $\vec{f} = (axy z^3)\vec{i} + (a-2)x^2\vec{j} + (1-a)xz^2\vec{k}$ will be irrotational.
- 17. (a) Evaluate $\iint_D (1+x+y) dx dy$ where *D* is the region bounded by $y+x=0; x=\sqrt{y}; y=0$ and y=1.

Or

(b) Using triple integral, find the volume of the sphere $x^2 + y^2 + z^2 = a^2$.

Page 6 Code No. : SS 30345 E

18. (a) Evaluate $\iint_{S} \overline{f} \cdot \overline{n} \, ds \qquad \text{where}$ $\overline{f} = 4xz\overline{i} - y^{2}\overline{j} + yz\overline{k} \text{ and } S \text{ is the surface of}$ the cube bounded byx = 0; x = 1; y = 0; y = 1; z = 0 and z = 1.

Or

(b) Evaluate $\int_C \vec{f} \cdot d\vec{r}$ where $\vec{f} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$

and *C* is the rectangle in the *xy*-plane bounded by x = 0; x = a; y = 0; y = b.

19. (a) Verify Gauss divergence theorem for $\overline{f} = y\overline{i} + x\overline{j} + z^2\overline{k}$ and the cylindrical region S given by $x^2y^2 = a^2$; z = 0 and z = 4.

Or

(b) Verify Stoke's theorem for $\overline{f} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

Page 7 Code No. : SS 30345 E

20. (a) Show that
$$x^2 = \frac{\pi}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$$
 in the interval $-\pi \le x \le \pi$ and deduce that
(i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
(ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$.
Or

(b) Find a sine series in the range 0 to π for the function $f(x) = \begin{cases} x; & 0 < x < \frac{\pi}{2} \\ \pi - x; & \frac{\pi}{2} < x < \pi. \end{cases}$

Page 8 Code No. : SS 30345 E