(8 pages)

Reg. No. :

Code No.: 7846

Sub. Code: PMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Third Semester

Mathematics - Core

ADVANCED ALGEBRA - I

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. If V is finite dimensional and W is a subspace of V, then dim A(W) = -----
 - (a) $\dim V \dim W$
 - (b) $\dim W \dim V$
 - (c) $\dim \hat{V} \dim \hat{W}$
 - (d) None

- 2. If $u, v \in V$ then u is said to be orthogonal to v if
 - (a) (u, v) = 0
- (b) $(u, v) \neq 0$
- (c) (u, v) = 1
- (d) $(u, v) \neq 1$
- 3. If $T \in A(V)$ and if $S \in A(V)$ is regular then
 - (a) $r(T) < r(STS^{-1})$
 - (b) $r(T) > r(STS^{-1})$
 - (c) $r(T) = r(STS^{-1})$
 - (d) $r(STS^{-1}) > r(S)$
- 4. If V is finite dimensional over F, and if $T \in A(V)$ is singular then there exists an $S \neq 0$ in A(V) such that
 - (a) ST = TS = I
- (b) ST = TS = 0
- (c) ST ≠ TS
- (d) $ST = TS = \{0\}$
- 5. A subspace W of V is invariant under $T \in A(V)$ if
 - (a) WT ⊃ W
- (b) WT = W
- (c) WT ⊂ W
- (d) $WT \neq W$

Page 2

Code No.: 7846

- 6. If $T \in A(V)$ is nilpotent, then ———— is called the index of nipotence of T if $T^k = 0$ but $T^{k-1} \neq 0$
 - (a) K-1
- (b) K
- (c) K+1

- (d) K-2
- 7. If A is invertible then $tr(A \subset A^{-1}) =$
 - (a) tr A

- (b) tr A-1
- (c) tr AA-1
- (d) tr C
- 8. For $A, B \in F_n$, $\det(AB) = -$
 - (a) $\det A + \det B$
- (b) $\det A \det B$
- (c) $(\det A)(\det B)$
- (d) none
- 9. If $T \in A(V)$ then the Hermitian adjoint of T, T^* is defined by (uT, v) =——— for all $u, v \in V$
 - (a) (uT^*, v)
- (b) (u, vT)
- (c) (u, Tv)
- (d) (v, T,*)
- 10. $T \in A(V)$ is unitary if and only if
 - (a) $TT^* = 0$
- (b) TT* ≠ 0
- (c) $TT^* = T * T$
- (d) $TT^* = 1$

Page 3 Code No.: 7846

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If V is finite dimensional, then prove that ψ is an isomorphism of V onto \hat{V} .

Or

- (b) If $u, v \in V$, then prove that $|(u, v)| \le ||u|| ||v||$.
- 12. (a) Show that if V is finite dimensional over F, then T∈ A(V) is invertible if and only if the constant term of the minimal polynomial for T is not zero.

Or

- (b) Prove that the element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$.
- 13. (a) If V is n-dimensional over F and if T ∈ A(V) has all its characteristic roots in F then show that T satisfies a polynomial of degree n over F.

Or

Page 4 Code No.: 7846 [P.T.O]

Let $T \in A(V)$ have all its distinct characteristic roots $\lambda_1, \lambda_2, ..., \lambda_k$ in F, then a basis of V can be found in which the matrix

T is of the form J_2 ... where

and where

Bi, Bi, ...Bi, are basic Jordan blocks belonging to λ_i .

- For $A, B \in F_n$ and $\lambda \in F$, prove the following:
 - $tr(\lambda A) = \lambda tr A$
 - (ii) tr(A+B) = trA + trB
 - (iii) tr(AB) = tr(BA).

Or

Prove that every $A \in F_n$ satisfies its secular equation.

> Code No.: 7846 Page 5

15. (a) Prove that if $\{v_1, v_2,...,v_n\}$ is an orthonormal basis of V and if the matrix of $T \in A(V)$ in this basis is (α_{ii}) then the matrix of T^* in this basis is (β_{ij}) where $\beta_{ij} = \overline{\alpha_{ji}}$.

Or

Show that if N is normal and AN = NA then $AN^* = N * A.$

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. Let V and W be two vector spaces over F of dimensions m and n respectively. Prove that Hom(V, W) is a vector space over F. Also find the dimension of Hom(V, W) over F.

Or

- Let V be a finite dimensional inner product space then prove that V has an orthogonal set as a basis.
- Prove that if V is finite dimensional over F. 17. then $T \in A(V)$ is regular iff T maps V onto V.

Or

Code No.: 7846 Page 6

- (b) Show that if V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $v_1, v_2,...v_n$ and the matrix $m_2(T)$ in the basis $w_1, w_2,...w_n$ of V over F, then there is an element $C \in F_n$ such that $m_2(T) = Cm_1(T)C^{-1}$. Infact, if S is the linear transformation of V defined by $v_i s = w_i$ for i = 1, 2,...n then C can be chosen to be $m_1(s)$.
- 18. (a) If $T \in A(V)$ has all its characteristics roots in F, then prove that there is a basis of V in which the matrix of T is triangular.

Or

- (b) Show that two nilpotent linear transformations are similar if and only if they have the same invariants.
- 19 (a) State and prove Cramer's rule.

Or

(b) Show that A is invertible if and only if $\det A \neq 0$.

Page 7 Code No.: 7846

20. (a) If $T \in A(V)$ then prove that $T^* \in A(V)$. More over

(i)
$$(T^*) = T$$

(ii)
$$(S+T)^* = S^* + T^*$$

(iii)
$$(\lambda S)^* = \overline{\lambda} S^*$$

(iv)
$$(ST)^* = T^*S^*$$
.

Or

(b) Prove that if N is a normal linear transformation on V, then there exists an orthonormal basis consisting of characteristic vectors of N, in which the matrix of N is diagonal, Equivalently, if N is a normal matrix there exists a unitary matrix U such that $UNU^{-1}(=UNU^*)$ is diagonal.

Page 8 Code No. : 7846