10	m		1.3
(6	Pa	OP	81
10	* **	B ~	90,

Reg. No. :

Code No.: 5331

Sub. Code: PMAM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2022

Fourth Semester

Mathematics - Core

COMPLEX ANALYSIS

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

- A function u which satisfied the Laplace's equation $\Delta^2 u = 0$ is called as -
 - (a) harmonic
- (b) analytic
- compact
- (d) empty
- A series of the form $a_0 + a_1x + a_2x^2 + \cdots +$ $a_n x^n + \cdots$ s called as
 - sequence
- (b) power series
- converge
- (d) null

- The linear transformation w = kz is aif = 1.
 - (a) parallel
- (b) regular
- (c) rotation
- (d) inverse
- The points z and z* are said to be with respect to the circle C through z_1, z_2, z_3 if and only if $(z^*, z_1, z_2, z_3) =$
 - (a) reflexive
- (b) transitive
- (c) none
- (d) symmetric
- Every Jordan curve in the plane determines exactly --- regions.
 - (a) two

- (b) one
- (c) zero
- (d) three
- $n(\gamma, -a) = -$
 - (a) $-n(\gamma, a)$ (b) $-n(\gamma, a)$

 - (c) $n(\gamma, -\alpha)$ (d) $-n(\gamma, -\alpha)$
- A function which is analytic and bounded in the whole plane must reduce to a -
 - (a) 0

- (b) variable
- constant
- (d) identity

Page 2

Code No.: 5331

- If f(a) = 0, there exists a first derivative $f^{(h)}(a)$ which is different from zero then 'a' is a zero of order -
 - (a)

- (c) h-1
- (d) h
- The residue of $\frac{e^2}{(z-a)(z-b)}$ at 'b' is

- (d) none
- 10. The poles and residues of is
 - (a) -3, -2 and 1, 1 (b) -3, -2 and -1, 1

 - (c) 1, 2 and 2, 3 (d) 2, 3 and -1, 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

- 11. (a) Expand $\frac{2W+5}{W+2}$ in power series of z-1. What is the radius of convergence? Or
 - Prove that if all zeros of a polynomial P(z)lies in a half plane, then all the zeros of the derivatives P'(Z) lie in the same half plane.

Code No.: 5331 Page 3

12. (a) Prove that $\int f(z) dz = -\int f(z) dz$.

- (b) If z_1, z_2, z_3, z_4 are distinct point in the extended plane and T any linear then transformation, that $(Tz_1, Tz_2, Tz_3, Tz_4) = (z_1, z_2, z_3, z_4).$
- Prove that if the piecewise differentiable 13. (a) closed curve does not pass through the point a, then the value of the integral is a multiple of 2i.

Or

- Suppose that f(z) is analytic in an open disk and let γ be a closed curve in ν . Then prove that for any point 'a' not on γ , $\int_{z}^{z} \frac{f(z)}{(z-a)} dz = 2\pi i n(\gamma, a) \text{ where } n \text{ is the index}$ of 'a' with respect to γ .
- Prove that if f(z) is analytic and non 14. (a) constant in a region, then its absolute value has no maximum.

Or

State and prove Taylor's theorem. (b)

> Code No.: 5331 Page 4

> > [P.T.O]

15. (a) Evaluate
$$\int_{|z|=1}^{-1} \frac{dz}{x^2 + 2az + 1}$$
, $a > 1$.

Or

(b) State and prove Rouche's theorem.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Derive Cacuhy Riemann equation in Cartesian coordinates.

Or

- (b) State and prove Abel's limit theorem.
- 17. (a) Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.

Or

(b) Prove that the line integral defined in depends only on the end points of if and only if there exists a function U(x, y) in with the partial derivatives p' = p and q' = q.

Page 5 Code No.: 5331

18. (a) Prove that if the function f(z) is analytic on R, then $\int_{\partial R_n} z \, dz = 0$.

Or

- (b) Let f(z) be analytic on the set R' obtained from a rectangle R by omitting a finite number of interior points j if f(z) = 0 for all j then prove that $\left| \int_{\partial R} f dz \right| < 8\varepsilon$.
- 19. (a) Suppose that is continuous on the arc. Then prove that the function $F_n(z) = 0$ is analytic in each of the regions determined by and its derivative is $F_n'(z) = nF_{n+1}(z)$.

Or

- (b) State and prove Cauchy's theorem.
- 20. (a) State and prove Cauchy residue theorem.

Or

b) Evaluate by the method of residues $\int_{0}^{\infty} \frac{x^{2}dx}{x^{4} + 5x^{2} + 6}.$

Page 6 Code No.: 5331