R	eg. No. :
Code No. : 40578 E	Sub. Code : SEMA 5 D

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Fifth Semester

Mathematics - Core

Major Elective — OPERATIONS RESEARCH — I

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer.

- In LPP the objective function subject to a set of linear equation (or) inequalities is known as
 - (a) Constraints
 - (b) Equations
 - (c) Objective function
 - (d) None

(b)	Solve th	e follo	wing	assign	ment pr	oblem:
		E	F	G	H	
	A	18	26	17	11	
15	В	13	28	14	26	
	C	38	19	18	15	
	D	19	26	24	10	

20	. (a)	Solve	the ic	Howi	ng se	quenc	e pro	priem	12
	Job	1	A	В	C	D	E	F	G
	Machi	ne M ₁	3	8	7	4	9	8	7
	Machi	ne M ₂	4	3	2	5	1	4	3
	Machi	ne M ₃	6	7	5	11	5	6	12

Or

(b) Use the graphical method solve the following 2 jobs 5 machines sequencing problem:

Job I Sequence (Time in hrs)	A	В	C	D	
		2	3	5	2
Job II	Sequence (Time in hrs)	D	C	A	В
		6	2	3	1

Page 10 Code No.: 40578 E

2.	The leading element obtained in simplex table is also called	6 method is used to find the initial basic feasible solution of a transportation problem				
	(a) Pivotal element	(a) VAM (b) MODI				
	(b) Minimum element	(c) Euler (d) Horney				
	(c) Bonded element	7. The method of solving an assignment problem is				
	(d) Unbounded element	(a) Modi method (b) Hungarian method				
3.	In a LPP the number of variables is 3 and the	(c) Vogel's method (d) Two-phase method				
	number of constraints is 2, then the constraints of	8. Assignment model is a special case of ———.				
	the dual is	(a) Transportation (b) Sequencing				
	(a) 2 (b) 3	(c) Routing (d) None of these				
	(c) 6 (d) 4					
4.	The dual of the dual is	The time for which the machine has no job to process is ———— on machine.				
	(a) Dual (b) Primal	(a) Total time (b) Processing time				
	(c) Optimum (d) Unbounded	(c) Idle time (d) None				
5.	A transportation problem is balanced if	10. Sequencing problems involving processing of two jobs on 'n' machines				
	(a) Total supply > Total demand	(a) can be solved by graphical method				
	(b) Total supply = 0	(b) cannot be solved by graphical method				
	(c) Total supply = Total demand	(c) have a condition that the processing of two				
	(d) Total demand = 0	jobs must be in the same order				
		(d) none of these				
	Page 2 Code No. : 40578 E	Page 3 Code No. : 40578 E				

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Solve graphically the following LPP Maximize $z = 4x_1 + 3x_2$ Subject to $2x_1 - 3x_2 \le 6$ $6x_1 + 5x_2 \ge 30$ $x_1, x_2 \ge 0$.

Or

- (b) Write down the standard form of the following LPP:

 Minimize $z = 2x_1 + 5x_2 + x_3$ Subject to $x_1 + 3x_2 4x_3 \le 20$ $2x_1 + x_2 + x_3 \ge 10$ $x_1 + 4x_2 + 5x_3 = 10$ $x_1, x_2, x_3 \ge 0$.
- 12. (a) Write down the dual of: Maximize $z = 3x_1 + 10x_2 + 2x_3$ Subject to $2x_1 + 3x_2 + 2x_3 \le 7$ $3x_1 - 2x_2 + 4x_3 = 3$ $x_1, x_2, x_3 \ge 0$.

Or

Page 4 Code No.: 40578 E

(b) Use dual simplex method to solve : Maximize $z = 2x_1 + 3x_2$ Subject to $2x_1 - x_2 - x_3 \ge 3$ $x_1 - x_2 + x_3 \ge 2$

 $x_1, x_2, x_3 \ge 0.$

13. (a) Using North-west corner rule find an initial basic feasible solution for the following transportation problem:

Page 5 Code No.: 40578 E

(b) Find the initial basic feasible solution for the following transportation problem using VAM method.

 (a) Find the assignment that minimize the total unit cost.

Or

(b) Solve the assignment problem

	A	В	C	D
X	18	24	28	32
Y	8	13	17	19
Z	10	15	19	22

Page 6 Code No.: 40578 E

15. (a) Determine the optimum sequence for the 5 jobs and minimum total elapsed time. Find also the idle time of machines M_1 and M_2 .

Job	A	В	C	D	E
Machine M ₁	5	4	8	7	6
Machine Ma	3	9	2	4	10

Or

(b) Determine the optimum sequence for the 8 jobs and minimum total elapsed time. Find also the idle time of machines M_1 and M_2 .

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Solve the following LPP by simplex method. Minimize $z = x_1 - 3x_2 + 2x_3$ Subject to $3x_1 - x_2 + 2x_3 \le 7$ $-2x_1 + 4x_2 \le 12$ $-4x_1 + 3x_2 + 8x_3 \le 10$

 $x_1, x_2, x_3 \ge 0.$

Or

Page 7 Code No.: 40578 E

(b) Solve the following by big M-method:

Maximize
$$z = x_1 + 2x_2$$

Subject to

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0.$$

17; (a) Solve by simplex method using dual of the following LPP

Minimize
$$z = 2x_1 + 3x_2$$

Subject to

$$x_1 + x_2 \ge 5$$

$$x_1+2x_2\geq 6$$

$$x_1, x_2 \ge 0.$$

Or

(b) Use dual simplex method to solve :

Minimize
$$z = 4x_1 + x_2$$

Subject to

$$3x_1 + x_2 \ge 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + x_2 \le 4$$

$$x_1,x_2\geq 0.$$

Page 8 Code No.: 40578 E

18. (a) Solve the following transportation problem:

Or

(b) Solve the following transportation problem:

$$D_1$$
 D_2 D_3 D_4 a_i

19. (a) Solve the following assignment problem:

$$M_1$$
 M_2 M_3

Or

Page 9 Code No.: 40578 E