(7 pages)

Reg. No. :

Code No.: 7848

Sub. Code: PMAM 35

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Third Semester

Mathematics - Core

RESEARCH METHODOLOGY

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. List of abbreviations is given
 - (a) at the end of a research project
 - (b) at the references page
 - (c) at the starting of project
 - (d) None

- 2. The pages of preliminary sections
 - (a) should not be numbered
 - (b) should be numbered using Roman numerals
 - (c) should be numbered using Arabic numerals
 - (d) none
- The ______ for research explains why you decided to embark on your research project?
 - (a) guide
 - (b) motivation
 - (c) problem
 - (d) title
- 4. Plagiarism means
 - (a) copying from other research work
 - (b) conclusion
 - (c) introduction
 - (d) a summary of the main problem
- 5. If the mgf of X is $M(t) = (1-2t)^{-s}$, then the distribution of X is
 - (a) N(2, 8)
- (b) N (8, 2)

(c) $\chi^2(2)$

(d) $\chi^2(16)$

Page 2 Code No. : 7848

- 6. The mean of a beta distribution with parameters α and β is
 - (a) $\frac{\alpha}{\alpha \beta}$

(b) $\frac{\alpha - \beta}{\alpha}$

(c) $\frac{\alpha}{\alpha + \beta}$

- (d) $\frac{\alpha \beta}{2\alpha}$
- 7. If $f(x) = \begin{cases} cx^4(1-x)^5, & 0 < x < 1, \\ 0, & \text{elsewhere} \end{cases}$ is a pdf then $c = \frac{1}{2}$
 - (a) 20
 - (b) 495
 - (c) 1260
 - (d) 0.0412
- 8. If F has an F distribution then $\frac{1}{F}$ has
 - (a) T distribution
- (b) Weibull distribution
- (c) F distribution
- (d) Cauchy distribution
- 9. If Xi's are $n(\mu, \sigma^2)$ then \overline{X} is
 - (a) $n(\mu, \sigma^2)$
- (b) $n(\mu, \frac{\sigma^2}{n})$

(c) n(μ,o)

(d) $n(\mu, \frac{\sigma^2}{n^2})$

Page 3 Code No. : 7848

- 10. The variance of $\frac{ns^2}{\sigma^2}$ is
 - (a) n-1

(b) 2(n-1)

(c) $\frac{\sigma^2}{n}$

(d) $\frac{\sigma^2}{n-1}$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

 (a) Explain with examples 'The title page' of a research project.

Or

- (b) Why is methodology important?
- 12. (a) What are the basic requirements of a research degree?

Or

- (b) Write a note on 'Acknowledgements'.
- (a) Find the mgf, mean and variance of gamma distribution.

Or

(b) If $N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} dw$, show that N(-x) = I - N(x).

Page 4

Code No.: 7848

[P.T.O.]

If F has an F distribution with parameters r_i and r_2 show that $y = \frac{1}{1 + \frac{r_1}{r_2} F}$ has a beta distribution.

Or

- (b) If X_1 , X_2 denote a random sample of size two from a distribution that is n(0,1), find the pdf of $Y = X_1^2 + X_2^2$.
- 15. (a) If $X_i(1 \le i \le n)$ are stochastically independent random variables having the normal distributions $n(\mu_i, \sigma_i^2)(1 \le i \le n)$, show that $Y = \sum_{i=1}^{n} k_i x_i$, where k_i are constants, is normally distributed with mean $\sum_{i=1}^{n} k_i \mu_i$ and variance $\sum_{i=1}^n k_i^2 \sigma_i^2.$

Or

(b) Find the pdf of $\frac{nS^2}{\sigma^2}$.

Page 5 Code No.: 7848 PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Explain the differences 16. between dissertation and a thesis.

Or

- (b) Write an essay on 'choosing and using your supervisor'.
- (a) Briefly explain the elements of Introduction.

Or

- Write an essay on 'Literature Review'.
- Find the mgf, mean and variance of the 18. normal distribution.

Or

- Let X be $n(\mu, \sigma^2)$.
 - P(X < 89) = 0.90 and p(X < 94) = 0.95find μ and σ^2 .
 - (ii) If $p(-b < \frac{x \mu}{\sigma} < b) = 0.90$, find b.

Page 6 Code No.: 7848

distribution student's Derive

Or

- If X_1 , X_2 are two independent $\chi^2(2)$ variables, what is the pdf of $Y_1 = \frac{X_1 - X_2}{2}$.
- State and prove the Central Limit Theorem.

Or

- (b) (i) If Y is $b(72,\frac{1}{3})$, find the approximate value of P(22<Y<28).
 - (ii) If Y is $b(100,\frac{1}{2})$, find the approximate value of P(Y = 50).