(8 pages)

Reg. No.:....

Code No.: 7753

Sub. Code: WMAM 13/ VMAC 13

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

First Semester

Mathematics - Core

ORDINARY DIFFERENTIAL EQUATIONS

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The characteristic polynomial of y'' + y' 2y = 0 is
- (c) $(r^2 + r 2)y = 0$ (d) r_1, r_2

- Two solutions φ_1, φ_2 of L(y) = 0 are linearly dependent iff $W(\varphi_1 \varphi_2) = \frac{1}{2}$

(b) 1

(c)

- (d) $\neq 0$
- The value of the Wronksian is - $\varphi_1 = \cos x$ and $\varphi_2 = \sin x$.

(b) -1

- (d) 2
- The roots of the characteristic polynomial of the equation y''' - y' = 0 are -
 - (a) 0, 1, -1 (b) 0, 1, 1

 - (c) 1, 1, 1 (d) 1, -1, -1
- The real valued solution of y'' + y = 0 is

 - (a) $c_1 + c_2 x$ (b) $c_1 e^x + c_2 e^{-x}$
 - (c) $c_1 \cos x + c_2 \sin x$ (d) $c_1 x + c_2 x^{-1}$
- of the equation The particular solution $y'' + 4y = \cos x$ is —
 - (a) $\frac{1}{3}\sin x$ (b) $\frac{1}{3}x$

- (d) $\frac{1}{3}\cos x$

Page 2

- 7. The linear differential equation L(y) = b(x) is said to be non-homogeneous equation if b(x)
 - (a) = 0

(b) $\neq 0$

(c) > 0

- (d) < 0
- 8. The n functions $\varphi_1, \varphi_2,, \varphi_n$ defined on an interval I are said to be ______ if the only constants $c_1...c_n$ such that $c_1\varphi_1(x)+...+c_n\varphi_n(x)=0$ for all x in I are the constants $c_1=c_2=...=c_n=0$.
 - (a) linearly independent
 - (b) linearly dependent
 - (c) cannot say
 - (d) both (a) and (b)
- 9. The value of the Legendre polynomial $p_1(x)$ is
 - (a) 1

(b) 0

(c) x

- (d) x^2
- 10. The singular point and its nature of the equation $x^2y'' 5y' + 3x^2y = 0$ is ———
 - (a) x = 0, regular
- (b) x = 0, not regular
- (c) x = 1, not regular (d) No singular point

Page 3 Code No.: 7753

- - (a) regular
- (b) particular
- (c) not regular
- (d) singular
- 12. The origin $x_0 = 0$ is for the equation $x^2y'' y' \frac{3}{4}y = 0.$
 - (a) singular point
- (b) regular singular
- (c) irregular singular (d) analytic
- - (a) $\frac{1}{x}$

(b) x

(c) x^2

- (d) $-\frac{1}{x}$
- 14. The equation $(x^2 + xy)dx + xy dy = 0$ is _____
 - (a) exact
- (b) not exact
- (c) can't say
- (d) both (a) and (b)
- 15. The Lipschitz constant for the function $f(x, y) = 4x^2 + y^2 ons$, $|x| \le 1$, $|y| \le 1$
 - (a) 2

(b) 1

(c) 4

(d) 3

Page 4 Code No. : 7753

[P.T.O.]

PART B —
$$(5 \times 4 = 20 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If φ_1 , φ_2 are two solutions of L(y) = 0 on an interval I containing a point x_0 then prove that $W(\varphi_1, \varphi_2) = e^{-a_1(x-x_0)} W(\varphi_1, \varphi_2)(x_0)$.

Or

- (b) Compute the solution of the initial value problem y'' 2y' 3y = 0; y(0) = 0, y'(0) = 1.
- 17. (a) Let $\varphi_1, \varphi_2, \varphi_n$ be linearly independent solution of L(y) = 0 on an interval I if c_1, c_n are any constants then prove that $\varphi = c_1 \varphi_1 + ... + \varphi_n c_n$ is a solution.

Or

- (b) Find the solutions of y''' y' = x.
- 18. (a) Find the solution φ for the equation $y'' \frac{2}{x^2}y = x \ (0 < x < \infty). \qquad \text{Given} \qquad \varphi_1 = x^2,$ $\varphi_2 = x^{-1}.$

Or

Page 5 Code No.: 7753

- (b) Verify $\varphi_1 = x^3$ satisfy the equation $x^2y'' 7xy' + 15y = 0$ (x > 0) and find $\varphi_2 = (x)$.
- 19. (a) Prove that $J_0'(x) = -J_1(x)$.

Or

- (b) Calculate the roots of the indicial equation of $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0.$
- 20. (a) Verify whether the equation $y' = \frac{-e^x}{e^y(y+1)}$ is exact or not.

Or

(b) State and prove the theorem on Lipschitz condition.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL the questions, choosing either (a) or (b). Each answer should not exceed 600 words.

21. (a) Let φ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing x_0 . The prove that for all x in I, $\|\varphi(x_0)\|e^{-k|x-x_0|} \le \|\varphi(x)\| \le \|\varphi(x_0)\|e^{k|x-x_0|} \quad \text{where}$

$$\|\varphi(x)\| = \|\varphi(x)\|^2 + |\varphi'(x)|^2^{\frac{1}{2}}, \ k = 1 + |a_1| + |a_2|.$$

Or

Page 6 Code No.: 7753

- (b) Prove that two solutions φ_1, φ_2 of L(y) = 0 are linearly independent on I if and only if $W(\varphi_1, \varphi_2)(x) \neq 0$ for all x in I.
- 22. (a) Compute three linearly independent solutions and the Wronskian for the equation y''' 4y' = 0.

Or

- (b) Compute the solution of y''' + y'' + y' + y = 1.
- 23. (a) Find two power series solutions of y'' xy' + y = 0.

Or

- (b) If $\varphi_1, \varphi_2,\varphi_n$ are n solutions of L(y) = 0 on I, prove that they are linearly independent if and only if $W(\varphi_1....\varphi_n)(x) \neq 0$ for all x in I.
- 24. (a) Derive Bessel function of zero order of the first kind denoted by ${\cal J}_0$.

Or

(b) Solve the Euler equation of n^{th} order $x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots a_n y = 0$.

Page 7 Code No.: 7753

25. (a) For the problems given compute the first four approximations $\varphi_0, \varphi_1, \varphi_2, \varphi_3$

(i)
$$y' = x^2 + y^2$$
, $y(0) = 0$

(ii)
$$y' = 1 + xy$$
, $y(0) = 1$.

Or

(b) Verify whether the given equations are exact or not if exact solve

(i)
$$(x+y)dx + (x-y)dy = 0$$

(ii) $\cos x \cos^2 y \, dx - \sin x \sin 2y \, dy = 0.$

Page 8 Code No.: 7753