(8 pages)	Reg. No. :	2.	Let \mathbb{B} and \mathbb{B}' be bases for the topologies J and J' respectively on X . Then J' is finer than J if and	
Code No. : 6364	Sub. Code : HMAM 32	only if for each we V and each her		
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2014.			(a) $x \in B' \subset B$ for every basis element $B' \in \mathbb{Q}^{+}$ (b) $x \in B' \not\subset B$ for every basis element $B' \in \mathbb{Q}^{+}$	
Third Semester			 (c) x ∈ B' ⊂ B for some basis element B' ∈ B' (d) x ∈ B' ⊄ B for some basis element B' ∈ B' 	
Mathematics				
TOPOLOGY		3.	If $B = \left\{ \frac{1}{n} / n \in \mathbf{z}_+ \right\}$ is a subset of the real line R ,	
(For those who joined in July 2012 onwards)			then $\overline{B} =$.	
Time : Three hours	Maximum : 75 marks		(a) $\{0\}$ (b) $\{0\} \cup B$	
PART A	$-(10 \times 1 = 10 \text{ marks})$		(c) B (d) R	
Answer ALL questions. Choose the correct answer : 1. The finite complement topology on a set X is the collection U of X such that (a) X-U is finite		4.	Let A be a subset of a topological space X and $x \in X$. Then x is a limit point of A if	
			(a) Every neighbourhood of x intersects A	
			(b) Some neighborhood of x intersects A	
			(c) Every neighborhood of x intersects A in	
(b) $X - U$ is a	(b) $X - U$ is countable		some point other than x itself	
(c) $X - U$ is either finite or countable			(d) Some neighborhood of x intersects A in some point other than x itself	
(d) $X - U$ is e	either finite or is all of X .			
			Page 2 Code No. : 6364	

5. If R denotes the set of real numbers in its usual topology and R_{ℓ} denotes the same set in the lower limit topology, then the identity function $f: R \rightarrow R_{\ell}$ is _____.

- (a) a continuous function
- (b) not a continuous function
- (c) uniformly continuous
- (d) not uniformly continuous
- 6. Let $X = [0,1] \cup [2,3]$ and Y = [0,2] be two subspaces of R. Define the map $p: X \to Y$ by

$$p(x) = \begin{cases} x, & \text{if } x \in [0,1] \\ x-1, & \text{if } x \in [2,3] \end{cases}$$

Then p is _____

- (a) surjective, continuous and open
- (b) surjective, continuous, closed and open
- (c) surjective, open but not continuous
- (d) surjective, continuous, closed but not open.
- 7. The space $I \times I$ in the dictionary order topology is

(a) path connected

(b) not connected

- (c) connected but not path connected
- (d) neither connected nor path connected. Page 3 Code No.: 6364

- 8. Which one of the following is compact?
 - (a) The real line R
 - (b) The interval (0, 1]

(c)
$$X = \{0\} \cup \left\{\frac{1}{n} \middle| n \in \boldsymbol{z}_{+}\right\}$$

- (d) The interval (0, 1)
- 9. The minimal uncountable well-ordered set S_{Ω} is ______ in the order topology.
 - (a) Compact
 - (b) Neither compact nor limit point compact
 - (c) Limit point compact but not compact
 - (d) Not limit point compact.
- 10. Which one of the following is normal?
 - (a) R_{ℓ}
 - (b) R_ℓ^2
 - (c) $S_{\Omega} \times \overline{S}_{\Omega}$
 - (d) R^J , when J is uncountable.

Page 4 Code No. : 6364 [P.T.O.] PART B — $(5 \times 5 = 25 \text{ marks})$

- Answer ALL questions, choosing either (a) or (b), each answer should not exceed 250 words.
- 11. (a) If A is a subset of topological space X and if for each $x \in A$ there is an open set U containing x such that $U \subset A$, then show that A is open in X.

Or

- (b) If A and B are subsets of a topological space X then prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 12. (a) Let X and Y be topological spaces. Then show that $f: X \to Y$ is continuous iff for each $x \in X$ and each neighborhood V of f(x)there is a neighborhood U of x such that $f(U) \subset V$.

Or

- (b) If each X_{α} is Hausdorff space, then show that $\prod X_{\alpha}$ is a Hausdorff space.
- 13. (a) Let X and Y be connected space. Show that $X \times Y$ is connected.

Or

(b) Prove that every compact subspace of a Hausdorff space is closed.

Page 5 Code No. : 6364

- 14. (a) Prove that every metrizable space is normal. Or
 - (b) Prove that every compact Hausdorff space is normal.
- 15. (a) State and prove imbedding theorem. Or
 - (b) Prove that a product of completely regular spaces is completely regular.

PART C — $(5 \times 8 = 40 \text{ marks})$

- Answer ALL questions, choosing either (a) or (b), each answer should not exceed 600 words.
- 16. (a) (i) If C is a collection of open sets in a topological space X such that for each open set U of X and each x in U there is an element C of C such that $x \in C \subset U$, then prove that C is a basis for the topology of X.
 - (ii) Show that the topologies of R_l and R_k are strictly finer than standard topology on R.

Or

- (b) (i) Show that a subspace of a Hausdorff space is a Hausdorff space.
 - (ii) Let Y be a subspace of X. Then show that a set A is closed iff it equals the intersection of a closed set of X with Y.

Page 6 Code No. : 6364

- 17. (a) (i) State and prove pasting lemma.
 - (ii) If $f, g: X \to Y$ are continuous and if $h(x) = \min\{f(x), g(x)\}$, then show that h is continuous.

Or

(b) Let p: X → Y be a quotient map, let A be a subspace of X that is saturated with respect to p : let q: A → p(A) be the map obtained by restricting p. If either A is open or p is open, then show that q is a quotient map.

18. (a) (i) Show that continuous image of a connected space is connected.

(ii) Prove that a space X is locally connected iff for every open set U of X, each component of U is open in X.

Or

- (b) Prove that the product of finitely many compact spaces is compact.
- 19. (a) Show that the space \mathbb{R}_l satisfies all the countability axioms but the second.

Or

(b) Show that every regular space with countable basis is normal.

Page 7 Code No. : 6364

20. (a) Show that every regular space with countable basis is metrizable.

Or

(b) State and prove Urysohn's lemma.