Code No: SS5859

Reg. No.....

Sub Code: PPHM21

M.Sc. (CBCS) DEGREE SPECIAL SUPPLEMENTARY EXAMINATION, APRIL 2020

SECOND SEMESTER

Physics

MATHEMATICAL PHYSICS - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The Cauchy-Riemann equation in polar form is
 - (a) $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial \theta}$
- (b) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$
- (c) $\frac{\partial u}{\partial r} = -\frac{\partial v}{\partial \theta}$
- (d) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$

If a function at a point is single valued and has a derivative at every point in some neighbourhood of it in a domain H is called ————— function

- (a) complex
- (b) holomorphic
- (c) irregular
- (d) none of these

- (a) Inverse element
- (b) Identity element
- (c) Generator
- d) Reciprocal element
- 4. The dimensionality theorem can be expressed as
 - (a) $\sum li^2 = n$
- b) $\sum li^2 \le n$
- (c) $\sum li^2 \ge n$
- (d) $\sum li^2 = 0$
- - (a) 1

- (b) 0
- (c) $(-1)^m \frac{2m!}{2^{2m} (m!)^2}$
- (d) $\frac{2m!}{2^{2m}(m!)^2}$

6. $H_n(0) =$ _____, if *n* is an odd integer

- (a) $(-1)^n \frac{n!}{(n/2)!}$
- (b) $\frac{n!}{(n/2)!}$

(c) 0

 $(d) \qquad (-1)^n$

Page 2

7.	In t	he three	dimensi	onal	heat	flow	equat	ion
		$=\frac{1}{h^2}\frac{\partial u}{\partial t}, h^2$						
	(a)	Planck's		(b)	diffu	sivity		
**	(c)	Helmholt	Z	(d)	Lapl	acian		
8.	The	equation	$\frac{\partial^2 \tau}{\partial t^2} + w$	$^2\tau=0$	is th	ne —	<u> </u>	
	equation of zeroth order							
	(a)	Laguerre	's	(b)	Lag	endre		
	(c)	Hermite	0:	(d)	Bes	sel		
9.	Using Kronecker delta, $\delta_v^{\ \mu} A^{\mu} =$							
	(a)	A^{μ}		(b)	0			
	(c)	A^{v}		(d)	=1			
10.	If A^{μ} and B_{μ} are any two vectors, one contra							
	variant and other covariant, then $A^{\mu} B_{\mu}$ is							
	(a)	Covaria	nt	8			e.	
	(b)	Contra	variant					
	(c)	Mixed t	ensor		.63			
	(d)	Invaria	nt				¥	9
			Par	ma 3		. *		_

PART B - (5 × 5 = 25 marks)

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) If f(z) is analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$

Or

- (b) State and prove Cauchy's integral formula.
- 12. (a) Write a short note on cosets.

Or

- (b) Write a short note on reducible and irreducible representations and prove that the two dimensional representations of matrices C_4 is reducible.
- 13. (a) Derive the generating function of Legendre polynomial.

Or

(b) Prove that $2xH_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$.

Page 4

14. (a) The ends A and B of a rod 20 cm long are at temperature 30°C and 80°C respectively. Until steady state prevails. The temperatures at the ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t.

Or

- (b) Derive the D'Alembert's solution of vibrating string.
- 15. (a) Elaborate with suitable example the outer product and contraction of tensors.

Or

(b) Derive the expression for strain, stress and Hooke's law in the form of tensors.

PART C
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Discuss in detail the necessary and sufficient condition for a function to be analytic.

Or

- (b) (i) Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$ are harmonic functions of x and y, but are not harmonic conjugates.
 - (ii) Prove that the function $f(z) = e^{\sin z}$ is analytic z = x + iy.

Page 5

17. (a) Elaborate in detail the isomorphism and homomorphism.

Or

- (b) (i) Prove that two right cosets of a subgroup in a given group are either equal or else have no elements in common.
 - (ii) Write a short note on conjugate and normal subgroups.
- 18. (a) Derive the power series solution of Legendre differential equation in descending powers of x.

Or

- (b) Using the Hermite polynomial of degreen, derive $H_3(x)$ and $H_4(x)$.
- 19. (a) A thin rectangular plate whose surface is impervious to heat flow has arbitrary distribution of temperature f(x, y) at t = 0, Its four edges x = 0, x = a, y = 0, y = b are kept at zero temperature. Determine the subsequent temperature of the plate after time t.

Or

(b) Derive the complete solution for the vibrations of a rectangular membrane.

20. (a) Show that $T = \begin{pmatrix} -x_1 x_2 & -x_2^2 \\ x_1^2 & x_1 x_2 \end{pmatrix}$ is a second order tensor in two dimensions and $S = \begin{pmatrix} -x_1 x_2 & -x_2^2 \\ x_1^2 & -x_1 x_2 \end{pmatrix}$ is not a tensor.

 \mathbf{Or}

(b) Elaborate the applications of tensor to nonrelativistia physics using the tensors in the dynamics of a particle.