(7 pages)

Reg. No. :

Code No.: 41365 E Sub. Code: JACA 21/ SACA 21

> B.C.A. (CBCS) DEGREE EXAMINATION, APRIL 2019.

> > Second Semester

Computer Application - Allied

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

(For those who joined in July 2016 onwards)

Time: Three hours

Maximum: 75 marks

PART A $-(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Let $S = \{1, 2, 3, 4\}$. Define a relation ρ on S as $a \rho b \Leftrightarrow a < b$. Then ρ is
 - (a) {(1, 2), (1, 3), (1, 4)}
 - (b) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}
 - (c) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
 - (d) {(1, 1), (2, 2), (3, 3), (4, 4)}

- of any two equivalence relation need not be an equivalence relation.
 - (a) intersection
 - (b) union
 - (c) product
 - (d) complement
- 3. The range of the function $f: R \to R$ given by f(x) = 1 is
 - (a) 1

(b) R

(c) {1}

- (d) ø
- 4. The inverse of $f: R \to R$ given by f(x) = x + 3
 - (a) $f^{-1}(x) = 3 x$
 - (b) $f^{-1}(x) = x 3$
 - (c) $f^{-1}(x) = 3 + \frac{1}{x}$
 - (d) $f^{-1}(x) = \frac{1}{x+3}$
- P ₹ Q = F
 - (a) P = T and Q = T
 - (b) P = T and Q = F
 - (c) P = F and Q = F
 - (d) none

Page 2 Code No. : 41365 E

6.	$P \lor P \Leftrightarrow P$					
	(a)	Idempotent				
	(b)	Commutative	,			
	(c)	Associative				
	(d)	Identity	14.57			e uni
7.	The number of vertices of odd degree in a graph always —————.					
	(a)	odd	1	(b)	even	
	(c)	2		(d)	3	
8.	A vertex of degree one is ———.					
	(a)	none		(b)	odd	
	(c)	pendant		(d)	isolated	
9.	The number of pendant vertices in a binary tree is					
	(a)	n+1		(b)	n	
	(c)	$\frac{n+1}{2}$		(d)	none	
10.	A tree with n vertices has — edg					— edges.
	(0)	1		(6)	n-1	

(d)

Page 3 Code No. : 41365 E

2n

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that $(A \cap B)^C = A^C \cup B^C$.

Or

- Let $A = \{a,b,c,d,e,f\}, B = \{a,d,n,m\}.$ (i) $A \cup B$ (ii) $A \cap B$ (iii) A - B.
- Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then
 - $g \circ f$ is one-one $\Rightarrow f$ is one-one
 - (ii) g∘f is onto ⇒ g is onto.

Or

- Let $f: X \to X$ be any function, then $f \circ i_x = i_x \circ f = f$.
- Construct the truth table for $\neg (P \rightarrow Q) \rightarrow P$. 13. (a)

Or

Show that $(P \wedge Q) \rightarrow (P \vee Q)$ is a tautology.

Page 4 Code No.: 41365 E [P.T.O.]

- 14. (a) Define:
 - (i) Regular graph
 - (ii) Pseudo graph
 - (iii) Complete graph.

Or

- (b) The number of vertices of odd degree in a graph G is always even.
- 15. (a) Prove that a tree with n vertices has n-1 edges.

Or

- (b) Define:
 - (i) Walk
 - (ii) Path
 - (iii) Connected graph.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Or

(b) Show that $A-B=A-(A\cap B)=(A\cup B)-B$.

Page 5 Code No. : 41365 E

17. (a) Show that $f: R \to R$ defined by f(x) = 2x - 3 is a bijection and find its inverse. Compute $f^{-1} \circ f$ and $f \circ f^{-1}$.

Or

- (b) If $f: N \to N$, $g: N \to N$ and $h: N \to R$ defined as f(x) = 2x, g(y) = 3y + 4 and $h(z) = \sin z$ for every x, y, z in N. Show that $h \circ (g \circ f) = (h \circ g) \circ f$.
- 18. (a) Construct the truth table to show that $\exists P \lor (Q \land R) \bowtie (P \lor Q) \land (P \lor R)$.

Or

- (b) Construct the truth table to show that $(P \lor (Q \land R)) \rightleftharpoons (P \lor Q) \land (P \lor R)$ is a Tautology.
- 19. (a) Explain the types of graphs and examples.

Or

(b) The maximum number of edges among all n vertex graphs with no triangles is $\left\lceil \frac{n^2}{4} \right\rceil$.

Page 6 Code No.: 41365 E

A graph G is connected iff for any partition of V into disjoint subsets V_1 and V_2 there is an edge of G joining a vertex of V_1 to a vertex of V_2 .

Or

A connected graph is Eulerian iff every vertex of has an even degree.

Page 7 Code No. : 41365 E