	Answ	PART C — (5 × 8 = 40 marks) er ALL questions choosing either (a) or (b).	Reg. No. :		
16.	757-90	(i) Give the mechanism of MC-Lefferty rearrangement. (5)	Code No.: 41106 E Sub. Code: JMCH 63		
		(ii) What are the advantages of TMS as internal standard in NMR spectroscopy? (3)	B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.		
	(b)	Or (i) What is chemical shift? (3)	Sixth Semester		
		(ii) Explain the NMR spectrum of benzene radical. (5)	Chemistry — Main		
17.	(a)	Derive the rate law for first order reaction. Or	PHYSICAL CHEMISTRY — IV		
	(b)	Write Arrhenius equation. Discuss the determination of 'A' and Ea from it.	(For those who joined in July 2016 onwards)		
18.	(a)	(i) State and explain Lewis concept. (5) (ii) What is common-ion effect? (3)	Time: Three hours Maximum: 75 marks		
	(b)	Or What are acid-base indicators? Give their	PART A — $(10 \times 1 = 10 \text{ marks})$		
	(6)	application in acid base titration.	Answer ALL questions.		
19.	(a)	Define the following terms: $(2+3+3)$	Choose the correct answer.		
		(i) phase (ii) component			
		(iii) degrees of freedom.	 High energy electrons are used as source in spectroscopy. 		
	(b)	Explain the phase diagram of magnesium-	(a) Mass (b) IR		
00		zinc system.	(c) Raman (d) NMR		
20.	(a)	Describe the synthesis of nanoparticles by bottom-up approach.	2 PGP 4 1 1 1 1		
		Or Or	2. ESR spectrum of methyl radical contains lines.		
	(b)	Give a detailed study of applications of Nano technology.	(a) 1 (b) 2		

Page 4 Code No. : 41106 E

In	a -	order	reaction, rate	
inde	pendent of the co	ncentrat	ion of reactants.	
(a)	zero	13.11.5	first	
(c)	second	(d)	third	
Arrhenius equation is				
(a)	$A = ke^{-E_0/RT}$	(b)	$A = -ke^{-E\alpha/RT}$	
(c)	$k = Ae^{-E\alpha/RT}$	(d)	$k = -Ae^{-E\alpha/RT}$	
pH.	+ pOH =			
(a)	0	(b)	1	
(c)		(d)	14	
	is a	salt of w	reak acid and stro	
base		2000	NIII CI	
(a)	NaCl	(b)	NH ₄ Cl	
(c)	CH ₃ COONA	(d)	CH ₃ COONH ₄	
For	one component	system	the phase rule	
(a)	F = 1 - P	(b)	F = 2 - P	
(c)	F = 3 - P		F = P - 1	
Whe	en the solute un- solvent, Nernst	der goes listributi	association in one on law is modified	
(a)	$C_1 = \sqrt{C_2}$	(b)	$C_1 = \sqrt{C_2} K_d$	
(c)		(d)	$C_1 \times C_2 = K_d$	
1 nanometre = —				
(a)	1×10 ⁻⁹ m	(b)	1×10 ⁻¹⁰ m	

Code No.: 41106 E

- 10. Which of the following is a allotrope of carbon?
 - (a) Graphite
- (b) Diamond
- (c) Fullerene
- (d) All the above

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

 (a) Write the differences between IR and Raman Spectroscopy.

Or

- (b) Give the applications of NMR spectroscopy.
- 12. (a) What are the factors influencing rate of a chemical reaction?

Or

- (b) Compare collision theory with ARRT.
- (a) What are buffer solutions? Give their types with examples.

Or

- (b) Explain the determination of degree of hydrolysis.
- 14. (a) Write the thermodynamic derivation of distribution law.

Or

- (b) Explain the phase diagram of sulphur system.
- (a) Give the properties of metal and metal oxide nanoparticles.

Or

(b) Explain the magnetic property of nano particles.

Page 3 Code No.: 41106 E