Reg. No. :

Code No.: 5832 Sub. Code: PMAM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

First Semester

Mathematics-Core

ANALYSIS – I

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

- 1. A nonempty perfect set in \mathbb{R}^k is _____.
 - (a) infinite (b) countable
 - (c) uncountable (d) atmost countable

2. Cantor set is _____.

- (a) open (b) countable
- (c) perfect (d) none of these

(7 pages)

3.	The	series $\sum_{n=0}^{\infty} x^n$ is	a c	onvergent series if	
		·			
	(a)	<i>x</i> < 1	(b)	$0 \le x < 1$	
	(c)	$x \ge 1$	(d)	None of these	
4.	If $S_n = 1 + \frac{(-1)^n}{n}$, the sequence $\{S_n\}$ converges $\{S_n\}$				
		·			
	(a)	0	(b)	1	
	(c)	2	(d)	None of these	
5.	Let	$\alpha = \lim_{n \to \infty} Sup \sqrt[n]{ a_n }$	then	$\sum a_n$ converges if	
		·			
	(a)	$\alpha = 1$	(b)	$\alpha < 1$	
	(c)	$\alpha > 1$	(d)	$\alpha = 0$	
6.	If R	If R is the radius of convergence of $\sum C_n Z^n$, then			
	serie	es $\sum \frac{Z^n}{n!}$ has $R = _$			
	(a)	0	(b)	1	

(c) ∞ (d) None of these

Page 2 Code No. : 5832

- 7. Let f be a continuous mapping of a metric space X into a metric space Y. If X is compact then f is
 - (a) Monotonic
 - (b) Constant
 - (c) Uniformly continuous
 - (d) None of these
- 8. Monotonic functions have _____.
 - (a) no discontinuities of the first kind
 - (b) no discontinuities of the second kind
 - (c) uncountable discontinuities
 - (d) none of these

9. Let f be defined by
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 then

- (a) f is differentiable at all points x
- (b) f is not differentiable at x = 0 and f is differentiable at other points
- (c) f is not differentiable at all points x
- (d) none of these

Page 3 Code No. : 5832

10. Let f be defined on [a,b]. If f has a local maximum at a point $x \in (a,b)$ and if f'(x) exists then

(a) f'(x) = 0 (b) $f'(x) \ge 0$

(c) $f'(x) \le 0$ (d) None of these

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove that compact subsets of a metric spaces are closed.

Or

- (b) If $\{I_n\}$ is a sequence of intervals in \mathbb{R}^1 , such that $I_n \supset I_{n+1}$, $n = 1, 2, 3, \dots$ then prove that $\bigcap_{n=1}^{\infty} I_n$ is nonempty.
- 12. (a) Prove that the subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

Or

(b) Prove that :

(i) if
$$p > 0$$
 then $\lim_{n \to \infty} \frac{1}{n^p} = 0$

(ii) if p > 0 then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

Page 4 Code No. : 5832 [P.T.O.] 13. (a) State and prove Root test.

```
Or
```

- (b) Suppose
 - (i) the partial sums A_n of $\sum a_n$ form a bounded sequence
 - (ii) $b_0 \ge b_1 \ge b_2 \ge \dots$
 - (iii) $\lim_{n\to\infty} b_n = 0$

then prove that $\sum a_n b_n$ converges.

14. (a) If f is a continuous mapping of metric space X into a metric space Y and if E is a connected subset of X then prove that f(E) is connected.

Or

(b) Suppose *f* is a continuous real function on a compact metric space X and $M = \sup_{p \in X} f(p)$, $m = \inf_{p \in X} f(p)$ then prove that there exists points $p, q \in X$ such that f(p) = M and f(q) = m.

Page 5 **Code No. : 5832**

15. (a) Let f be defined on [a,b]. If f is differentiable at a point $x \in [a,b]$ then prove that f is continuous at x.

Or

(b) Let f be defined by
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

prove that f is differentiable at all points x.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that Every K-cell is compact.

Or

(b) Let $Y \subset X$ prove that A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

17. (a) Prove that
$$\lim_{n \to \infty} \left[1 + \frac{1}{n} \right]^n = e$$

Or

(b) Suppose $a_1 \ge a_2 \ge a_3 \ge \dots \ge 0$ then prove that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{k=0}^{\infty} 2^k a_2 k = a_1 + 2a_2 + 4a_4 + \dots$ converges.

18. (a) State and prove Merten's theorem.

Or

- (b) State and prove Partial Summation formula.
- 19. (a) Let *f* be a continuous mapping of a compact metric space *X* into a metric space *Y* then prove that f is uniformly continuous of *X*.

Or

- (b) Prove that A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- 20. (a) State and prove mean value theorem.

Or

(b) State and prove *L* Hospital Rule.

Page 7 **Code No. : 5832**