Code No.: 6306 Sub. Code: PMAM 14/ZMAM 15

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

First Semester

Mathematics - Core

ORDINARY DIFFERENTIAL EQUATIONS

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer.

- 1. If $y_1 = 8mx$, $y_2 = 10mx$ are solutions of the linear ordinary differential equation, then Wronskian is
 - (a) 1

(b) 0

(c) -1

- (d) ± 1
- 2. Two independent solutions of y'' y = 0 are
 - (a) x, x^2

- (b) $\cos x, \sin x$
- (c) $\log x, \frac{1}{x}$
- (d) e^x , e^{-x}

3.
$$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 is

(a)
$$\frac{1}{1-x}$$

(b)
$$\frac{1}{1+x}$$

(c)
$$\log(1+x)$$

(d)
$$\tan^{-1} x$$

4.
$$\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5 \cdot 2^5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7 \cdot 2^7} + \dots$$

(a)
$$\frac{\pi^2}{3}$$
 (b) $\frac{\pi}{6}$

(b)
$$\frac{\pi}{6}$$

(c)
$$\frac{\pi^2}{3}$$

(d)
$$\frac{\pi}{4}$$

5. If
$$x_0$$
 is a singular point of $y''+P(x)y'+Q(x)y=0$ then

- P(x) is not analytic x_0 (a)
- Q(x) is not analytic x_0 (b)
- (c) either (a) or (b)
- either (a) or (b) or both (a) or (b) (d)

6. The singular points of
$$(1-x^2)y''-2xy'+p(p+1)y=0$$
 are

(b)
$$0, -1$$

(c)
$$1, -1$$

Code No.: 6306 Page 2

7.
$$P_n(-1) =$$

(a) 1

(b) -1

(c) $(-1)^n$

(d) 0

8.
$$\int_{-1}^{1} P_n^2(x) \, dx =$$

(a) $\frac{1}{2n+1}$

(b) $\frac{n}{n+1}$

(c) $\frac{2n}{2n+1}$

(d) $\frac{2}{2n+1}$

9.
$$\left(-\frac{1}{2}\right)! =$$

(a) *e*

(b) π

(c) $\sqrt{\pi}$

(d) none

10. The homogeneous system
$$\frac{dx}{dt} = 4x - y$$
; $\frac{dy}{dt} = 2x + y$

has solution

(a) $x = e^{3t}, y = e^{3t}$

(b) $x = e^{2t}, y = 2e^{2t}$

(c) both (a) and (b)

(d) neither (a) nor (b)

Page 3 **Code No.: 6306**

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Solve the initial value problem y''+y=0, y(0)=0 and y'(0)=1

Or

- (b) Solve y''+y=0, y(0)=2 and y'(0)=3
- 12. (a) Find a power series solution of (1+x)y' = py, y(0) = 1.

Or

- (b) Find the radius of convergence for $\sum_{0}^{\infty} n! \, x^n$ and $\sum_{0}^{\infty} \frac{x^n}{n!}$
- 13. (a) Define the Legendre polynomial $P_n(x)$.

Or

- (b) Describe Legendre series.
- 14. (a) Define $J_p(x)$. Also find $J_0(x)$ and $J_1(x)$.

Or

(b) Prove that $\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$

Page 4 Code No.: 6306

[P.T.O]

15. (a) Find $P_n(x)$ for n = 1, 2, 3

Or

(b) Show that the Bessel's equation $x^2y''+xy'+(x^2-1)y=0$ has only Frobenius series solution.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If $y_1(x)$ and $y_2(x)$ are linearly independent solutions y''+P(x)y'+Q(x)y=0 on [a,b], Prove that $c_1y_1(x)+c_2y_2(x)$ is the general solution for a suitable choice of constants c_1 and c_2 .

Or

- (b) If $y_1(x)$ is a known solution of y''+P(x)y'+Q(x)y=0 describe how you will find another solution.
- 17. (a) Solve y''+y=0 to find a power series solution.

Or

(b) Obtain power series expansions for e^x , $\sin x$, $\cos x$

Page 5 Code No.: 6306

18. (a) Prove that $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$

Or

- (b) State and prove the orthogonal property of Legendre polynomials.
- 19. Find two independent Frobenius solutions of the following equations:
 - (a) xy'' + 2y' + xy = 0.

Or

- (b) $x^2y''-x^2y'+(x^2-2)y=0$
- 20. (a) Find the general solution of the system $\frac{dx}{dt} = 3x 4y; \frac{dy}{dt} = x y$

Or

(b) Find the general solution of the system $\frac{dx}{dt} = x + y; \ \frac{dy}{dt} = 4x - 2y$

Page 6 Code No.: 6306